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ABSTRACT 

Available mean daily streamflow data from 143 gaging stations were 

initially analyzed to characterize recessions and low flows of Iowa streams. 

The period of record varies between 10 and 115 years for different stations. A 

computerized mathematical model was used to derive two master recession 

curves (MRC's)—one for winter and the other for summer—and to calculate 

the median storage delay factor for each individual station. These 

factors were used to estimate the dififusivity of the aquifer(s) contributing base 

flow to each stream. 

The MRC's can be used to forecast the general behavior of streams 

during a period of low flow. The calculated iiCj^ed factors were also used as 

indicators of the overall effect of basin geology to develop predictive statistical-

based models for estimation of low flow indices at ungaged sites on Iowa 

streams. 

Two calculated low flow indices which were selected as dependent 

variables for establishment of multiple regression models are (1) the Iowa 

regulated protected low flow defined as the flow rate on the duration curve 

which is equaled or exceeded 84% of the time (^84%) and (2) the minimum 

average of seven consecutive daily discharges that is expected once a decade 

(QT.IO)-

Four explanatory variables were initially chosen as potential 

independent variables. They are (1) drainage area, (2) datum elevation at the 

gage, (3) mean annual streamflow as a substitute for annual precipitation, 
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and (4) average storage delay factor, which was calculated in the first phase of 

this research. Multivariate regression techniques with different screening 

procedures were applied to formulate the models. Advanced diagnostic 

methods were utilized to improve performance of the models, and a complete 

residual analysis was conducted to check their adequacy. 

About 10% of the data were deliberately left out to be used later as a new 

set to evaluate the models in terms of validity and predictive ability. 
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CHAPTER 1. INTRODUCTION 

Allocation of streamflow among different users, making decisions 

regarding possible interbasin transfer of water (Vogel and Kroll, 1990), and 

maintenance of a proper balance between instream and offstream uses 

(McCormick, 1984) all require an in-depth knowledge of magnitude, duration, 

and frequency of low flows. 

Low flow is a broadly-used term (Miller and Wenzel, 1985) referring to 

flows that are considerably below normal. In a more precise sense, however, it 

is characterized by certain measures and indices, collectively called low flow 

characteristics. 

Low flow constitutes the most critical variable in design and 

management of reservoirs that should maintain adequate throughflow to 

satisfy hydropower requirements, irrigation supplements, and municipal 

supplies. Furthermore, in unregulated streams that receive effluent from 

wastewater treatment facilities, the reaeration capability (Riggs, 1980), the 

natural purification capacity, and the corresponding required degree of 

treatment is dependent upon characteristics of streamflow during dry weather 

conditions. There is also the concept of regulated protected flow that 

necessitates a required minimum instream flow to maintain an acceptable 

water quality standard for supporting fish and wildlife. This criterion ties low 

flow characteristics to instream water quality and justifies detailed low flow 

investigations. 

Although in cold regions such as Alaska there may be periods of even 

zero streamflow due to prolonged subzero temperatures, low flows in general 

occur during warm periods, when evapotranspiration is high and 
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precipitation is insignificant. At the same time, the demand for water use is 

high. In such periods of deficiency streamflow is sustained exclusively by base 

flow, which is the contribution of groundwater (Mull, 1986). This is another 

facet of low flow, which relates aquifer characteristics to streamflow. It is a 

step toward integration of surface water and groundwater studies. 

Description of the studied area 

Iowa is one of the glaciated prairie states situated in the upper 

Mississippi valley. It is bounded on the east by the Mississippi River and on 

the west by the Missouri and Big Sioux Rivers, which drain the entire state. 

The Missouri basin is separated from the Mississippi basin by a natural 

divide lying roughly along a northwest to southeast line. This line separates 

the western third of the state (17,379 sq. miles) from the remainder (38,860 sq. 

miles) (Larimer, 1957). Streams west of the divide follow a northeast to 

southwest direction discharging into the Missouri River, while those in the 

east have a northwest to southeast orientation discharging into the Mississippi 

River (Figure 1.1). This arrangement gives Iowa a unique drainage pattern 

scheme. The interior streams act as a network of natural secondary drains, 

carrying the surface runoff into the border rivers. The two major river 

systems, the Des Moines and the Iowa, are located in the eastern part of the 

divide. In general, drainage basins are long and narrow with parallel lateral 

boundaries (Figure 1.2). 

On the basis of physiography, Lara (1974) established two hydrologic 

regions in Iowa that agree with the glacial geology of the state (Figure 1,3). 

Region I covers about 70% of the state and is characterized by the presence of a 

well-developed drainage network. Region II covers most of the area known as 
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Figure 1.1. Orientation of streams and location of gaging stations in Iowa (Fischer et al., 1990). 
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the Des Moines lobe (Ruhe, 1969). Flat topography, poorly-developed drainage 

patterns, and the existence of small ponds in shallow depressions (potholes) 

are the main features of this region. 

The topography of the state is closely related to glacial history. During 

the glaciation ages, the entire state was covered several times by glaciers 

(Figure 1.4). Later depositions by receding glaciers, together with wind-blown 

deposits (loess) and continuous erosion, are responsible for the rolling 

geomorphology, and soils of the state. Land forms range from the flat plains of 

north central Iowa to the narrow valleys of northeastern regions (Schwob 

1958). The lack of mountains, which has hydrologic significance in terms of 

natural storage and climate, is a unique characteristic of the state. The 

highest point in Iowa is in Osceola County (elev. 1675 feet), and the lowest point 

near Keokuk (elev. 480 feet) (Larimer, 1957). 

Climate 

Iowa has a temperate, humid climate subject to a variety of weather 

conditions (Kunkle, 1968). The state is the crossroad of different air masses 

and fronts. Therefore, the weather exhibits rapid and frequent changes (Shaw 

and Waite, 1964), 

During the summer, thunderstorms and showers account for most of 

the rainfall and for the highly variable streamflow. Heavy snow and rain are 

typical in the winter. The mean annual precipitation varies from 26 inches in 

the northwest to more than 34 inches in the southeast comer, with a statewide 

average of 32 inches. 

The normal annual temperature ranges from 45°P in the north to 51°F 

in the south, with an average of about 49°F for the state. 
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Background 

In response to the increasing demand for analysis of low flows in Iowa, 

Schwob (1958) analyzed the available data for the standard base period of 1934-

.1953 on interior Iowa streams. He summarized the results of his analysis in 

the form of tables and graphs for 84 gaging stations. This analysis was 

updated by Heinitz (1970) and Lara (1979), with a similar format but of course 

an increased number of stations and longer periods of record. The last 

updated statistical summaries of Iowa streamflow data including low flow 

statistics based on the data up to 1988 has been recently published by U.S. 

Geological Survey (Fischer et al., 1990). 

In addition to the above-mentioned activities by the U.S. Geological 

Survey, there have been some academic studies on the subject. Taiganides 

(1960) studied the frequency of low flows in 14 streams in north central and 

western Iowa. Howe (1966 and 1968) studied recession characteristics of 76 

stations and obtained a recession constant, k (defined in equation 2.2A), for 

each month of the growing season (May through September). The k was found 

to range from 0.75 to 0.99 for different months and stations. Saboe (1966) 

tabulated base flow recession curves for the summer months (June through 

September) for 94 gaging stations having at least five years of record. However, 

in the work of both Saboe and Howe, it appears that for each station only a few 

recession segments that receded linearly in a semi-logarithmic plot have been 

chosen, and the rest of the data have been ignored. Dougal (1969) studied 

variability of low flows in central Iowa. 
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Objectives 

The objectives of this study are: 

1. To generate Master Recession Curves (MRC's) for each gaging station 

in Iowa using all available data. 

2. To calculate a median storage delay factor for each gaging station. This 

factor will be used to represent the overall effect of basin geology on low 

flow characteristics, 

3. To develop predictive models for estimation of low flow at ungaged sites. 
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CHAPTER 2. LITERATURE REVIEW 

That part of the hydrologic cycle pertaining to stream regime during dry 

weather conditions is the primary concern of this study. Such a regime can be 

described by various statistics collectively referred to as low flow 

characteristics. Therefore, this literature review is concerned with the 

analysis and interpretation of streamflow variability in low flow periods. A 

brief review of the available literature on theoretical concepts and applied 

methods currently used in low flow analysis follows. Attempts are made to 

bridge the gap from introductory hydrology to the basic existing literature of 

this area. 

Low streamflow refers to the flow that is maintained during the dry-
4 

weather season. It is supplied by groundwater storage, which is known as 

base flow. Base flow provides a permanent supply to the perennial streams 

and, therefore, is the most reliable part of the streamflow. 

The study of base flow is one of the complicated problems in the 

hydrologic cycle. The complexity stems from the fact that the movement of 

groundwater toward the stream, from a hydraulic standpoint, is unsteady and 

the governing differential equation for this type of flow is nonlinear. A further 

complication is that hydraulic conductivity and effective porosity of the 

contributing aquifer(s) show substantial spatial variability. 

Significance of low flow studies 

Under the Federal Water Pollution Control Act (1972), the 

Environmental Protection Agency (EPA) is required to mandate the 

maintenance of a minimum water quality standard in streams, especially 
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those receiving effluent from industrial or municipal waste water treatment 

facilities. They have also identified the protection of fishery resources and 

wildlife habitats as one of the goals of sustaining instream flow. Since stream 

water quality degrades as its quantity declines (given a constant input of 

pollutants), low flow evaluation has become increasingly important for 

qualitative purposes. A better understanding of mechanisms involved in low 

flow generation and its behavior can help in making estimation of water 

supply, required storage for maintenance of adequate flow for waste dilution, 

and in controlling withdrawals for irrigation, cooling, and other uses during 

low flow periods. 

Interest in low flow studies can be traced back to at least 90 years ago, 

when the fundamental concepts of base flow were developed and its basic 

mathematics were derived. Hall (1968) prepared a comprehensive historical 

perspective of studies on base flow recession, some dating back to even the mid-

19th century. 

Comparison of peak flow and low flow 

A literature survey indicates that in flood studies the primeiry concern is 

only magnitude. An annual flood is defined as the highest peak discharge 

during a year (Riggs, 1985). In low flow analysis, however, the annual low 

flow (annual minimum flow) has been only used in frequency analysis. In 

most studies low flow is considered as a two-dimensional variable and 

characterized by magnitude and duration. In effect, a low flow period is 

viewed as a short drought. The duration term allows removal of diurnal 

variation and minor upstream disturbances. 
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Low flow indices 

It is diffic\ilt to determine who first suggested the definition of a low flow 

index as the lowest average of n-consecutive daily flows, but in practice this 

definition is well accepted and commonly used. Generally, low flow indices for 

1, 3, 7, 14, 30, 60, 90, 120, and 183 consecutive days are extracted from a 

streamflow record. The most widely used index of low flow in effluent dilution 

in the United States is seven-day ten-year low flow (QV ÎQ) defined as the 

smallest average of seven consecutive daily discharge that is expected to occur 

once in a ten-year period (Riggs, 1980). 

Weisman (1978) proposed a new idea that the period of time during 

which streamflow falls below a specified threshold flow (Q-ph) being substituted 

for the conventional n-day low flow. This index may be applicable in situations 

where duration of flow below a critical value is an important factor. 

Linkage between water quality and low flow 

Studies indicate that instream water quality is intimately related to the 

flow magnitude. Investigators have shown an inverse relation between 

stream discharge and the concentration of total dissolved solids (TDS) (Toler, 

1965a; K\inkle, 1965). Therefore, during low flow conditions, the TDS content of 

surface water tends to rise significantly. 

Kunkle (1965) reported that the minimum specific conductance of the 

streamflow, which is directly proportional to the TDS, coincided with the peak 

discharge; it increased continuously following the falling limb of hydrograph. 

Furthermore, lower discharges are more vulnerable to temperature 

fluctuation. Hence, during dry-weather conditions, not only the flow 

magnitude is of concern, but the quality of available water is also deteriorated. 
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Methods of studying low flow characteristics 

Several techniques have been devised to study and present the results of 

low flow analysis. These include the use of streamflow regime, base flow 

recession curves, flow duration curves, and frequency curves. 

Streamflow resdme 

When long-term streamflow data are available, flow regime can be 

plotted as the graph of streamflow versus time. The time scale may be months 

or years. If the line of mean flow is plotted on the same coordinate system, the 

curve can be used to evaluate hydrologic droughts. Droughts are considered to 

have three components—duration, magnitude (average water deficiency), and 

severity (cumulative water deficiency) (Hudson and Hazen, 1964; Dracup et al., 

1980A and 1980B). Flow regimes may also be considered as a time-series and 

be used to inspect trends, oscillatory patterns, and periodicities by utilizing 

moving average and other techniques (Spiegel, 1961; Yevjevich, 1972; 

McMahon and Diaz Arenas, 1982). 

Considerable information regarding basin permeability can be extracted 

from the flow regime. Figure 2.1 illustrates streamflow regimes of two 

streams of Indiana: Wildcat Creek with 277 square kilometers and Tippecanoe 

River with 201 square kilometers drainage area. Their drainage basins are 

only 80 kilometers apart and annual runoffs are about the same but their 

regimes are entirely different. The greater variability, and sharp response of 

Wildcat Creek to the runoff is attributed to the low permeability of its basin, 

which is floored with clayey till, as opposed to sandy, gravelly glacial outwash 

for Tippecanoe River (McGuinness, 1963). 
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Storm hydrograph 

A hydrograph is a plot of streamflow or stream elevation versus time at 

a given cross-section of the stream. The time scale is generally hours or days. 

It reflects the combined effects of basin characteristics, climate, and 

vegetation. It also represents the integrated response of different flow 

pathways. Yet it gives no indication of the origin of each individual pathway. 

Freeze and Cherry (1979) stated: 

Hydrograph reflects two very different types of contributions from 
the watershed. The peak delivered by overland flow and interflow 
and the base flow which is the result of a slow response to long-
term changes in the regional groundwater system. 

Hydrograph components 

Once a sufficient prolonged rainfall occurs, three major components 

with different lag times contribute discharge to the stream; (1) overland flow; 

(2) interflow; and (3) base flow. Sometimes two more components are also 

significant; (4) throughflow and (5) channel precipitation. The magnitude of 

different components has a stochastic nature. 

Overland flow is the main mode of water movement in arid climates, 

impervious or low permeable sites, and urban areas. It starts from the 

moment that rainfall intensity exceeds infiltration capacity. It may also be 

originated from snowmelt. Once it reaches a stream channel, it is called 

sxarface runoff (Stanley and DeWiest, 1966). 

Interflow or storm seepage is defined as the flow which infiltrates to the 

soil and moves laterally toward the stream before it reaches the water table. It 

is a prevalent mode in permeable basins underlain by a hardpan layer, which 
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encourages lateral movement of infiltrated water, or in well-drained forested 

basins (Brooks et al., 1991). 

Base flow comes from groundwater storage in a sufficient prolonged dry 

period. It is the last component of flow to diminish. 

Throughflow (or return flow) is the part that infiltrates into the soil on a 

slope and later seeps out downslope, joining the overland flow. 

Channel precipitation is the portion that falls directly on the stream 

channel. It may be significant in basins with high drainage density or 

numerous lakes. The Lake Michigan basin receives one-third of its 

precipitation directly on the body of water (Fetter, 1980). 

The above discrete characterization of the modes of water movement to 

streams is, of course, a gross simplification of a more complex natural process 

(Eagleson, 1977). 

Hydrograph separation 

In derivation of unit hydrograph and in aquifer recharge studies 

(Meyboom, 1961; Vecchioli et al., 1991), it is required to separate the 

hydrograph, in terms of time response, into two main components, namely 

direct surface runoff and base flow (Hursh and Brater, 1941). There is no 

universal method available. The adopted empirical procedures are somewhat 

arbitrary and not to be used blindly except for the sake of comparison. 

One commonly used method is to find the onset of base flow recession on 

the hydrograph using the empirical relation 

iV = A" (2.1) 

where N is the number of days it takes for overland flow and interflow to 
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recede, A is the basin area in square miles, and n = 0.2 (Viessman et al,, 1977; 

Linsley et al., 1982). Ahmed (1987) recommended a value of 0.35 for n. When 

bank storage (discussed later) is significant, it would be difficult to quantify 

base flow. 

Graphical separation of base flow is tedious and subject to personal 

judgment. Based on equation 2.1, White and Sloto (1990) used a computer 

program to separate the base flow in hydrographs of selected streams in 

Pennsylvania. They concluded that compared with the manual method, the 

program was fast and reduced subjectivity. 

According to Freeze (1972), "hydrograph separation appears to be little 

more than a convenient fiction." 

In addition to the conventional separation techniques, some researchers 

have used methods to relate the chemical composition of the solutions to the 

original pathways that water has taken to reach the stream channel (Kennedy 

et al., 1986; Robson and Neal, 1990). Pinder and Jones (1969) used the chemical 

hydrograph technique with a mass balance approach to determine base flow. 

O'Bien and Hendershot (1993) took the same approach using both reactive and 

conservative tracers. 

Recession of hydrograph 

Following a storm peak, the hydrograph starts to decline. The falling 

limb represents the recession of three main components: surface runoff, 

interflow, and base flow, with of course some overlapping. The lower part of 

the falling limb is dominated by base flow. Barnes (1939) pointed out that each 

component has exponential decay according to the relationship =Qok\ 

where k is the recession constant. The recession constant, however, differs 
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markedly for different components. While k for surface runoff is about 0.1, it 

is around 0.99 for base flow (Nutbrown and Downing, 1976). That means the 

recession rate slows down progressively (James and Thompson, 1970). In 

other words, 1 > ^base flow ^ ^interflow ^ ^overland flow ^ 

Stream categorization 

In arid and semiaiid regions, due to low precipitation, the water table is 

usually much lower than the stream bed. Therefore, as streams wind to lower 

elevations, they lose water through percolation and the discharge decreases 

accordingly. These streams are called influent or losing streams (Figure 

2.2A) and are fed by snowmelt runoff or base flow only at high altitude 

tributaries. If the supply from upstream is not sufficient, an influent stream 

may go dry for some time (Farvolden, 1963). 

In humid areas such as Iowa, streams are in hydraulic connection with 

the local groundwater. During recession periods, they receive base flow from 

the sloping water table. Streams of this type are called effluent and their 

discharge increases gradually as they move to downstream points (Figure 

2.2B). 

According to Naney et al. (1978) in most regions of the Great Plains, 

groundwater provides the entire streamflow for several months. Bjorklund 

and Brown (1957) reported that the South Platte River in Nebraska and 

Colorado is sustained by base flow for many months. 

During a flood event, if the flood crest exceeds the water table elevation, 

the hydraulic gradient which was previously toward the stream becomes 

reversed. Therefore, a gaining stream may temporarily become a losing 

stream (Fetter, 1980). Figure 2.2C depicts this condition. 
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Figure 2.2. Cross sections of influent and effluent streams: 
A. a losing stream; 
B. a gaining stream; 
C. a stream reach which is losing during flood stage and 

gaining during low flow periods (Fetter, 1980). 
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Base flow recession curve 

This curve is the lower part of the falling limb of the hydrograph and 

represents the rate at which groundwater is discheirged into the stream, in the 

absence of any replenishment. The shape and slope of recession curves are 

mainly controlled by geologic features of the basin, that is (1) the permeability 

and extent of the alluvium adjacent to the flood plain and in the vicinity of 

stream banks (Ewart and Brutsaert, 1972); (2) the dimension and type of 

contributing aquifer and its hydrogeologic characteristics (transmissivity and 

specific jdeld); and (3) the hydraulic gradient toward the streams at different 

times (i.e., the amount of water which is currently stored). 

Hall (1968) prepared a comprehensive historical perspective of different 

aspects of base flow recession. Using base flow recession curves, Riggs (1953) 

proposed a methodology for predicting low flows. Riggs (1964) used base flow 

recessions to characterize the aquifers. 

Base flow recession has been a subject of extensive mathematical 

modeling (Werner and Sundquist, 1951; Singh, 1969; Singh and Stall, 1971; 

Marino, 1973; Nutbrown and Downing, 1976; Rushton and Tomlinson, 1979; 

Dillon and Liggett, 1983). Based on idealized conditions of (1) homogeneous 

and isotropic water table aquifer that is hydraulically connected to the stream 

and overlies a horizontal, impervious layer; (2) Dupuit-Forchheimer 

assimiption for horizontal flow; and (3) no recharge or abstraction by leakage 

and evapotranspiration, Singh (1969) and Singh and Stall (1971) developed 

mathematical models for recession curves in both partially (stream bed above 

impervious layer) and fully (stream bed at impervious layer) penetrated 

streams. 
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Since base flow recession curves contain valuable information about 

sustainable flow and the parameters governing groundwater system 

(Nutbrown and Downing, 1976), their parameters often need to be used in the 

modeling of complex operational problems dealing with multiple supply and 

demand sites (Beran and Gustard, 1977). Recession characteristics are also 

being used to estimate evapotranspiration from groundwater (Langbein, 1944; 

Daniel, 1976); diffusivity of aquifers (Rorabaugh, 1960); recharge of 

groundwater (Rorabaugh, 1964; Vecchioli et al., 1991); and comparative 

studies of basins from a geological viewpoint (Knisel, 1963). From the results 

of analysis of the base flow recession curves of a stream draining a chalk 

formation in Britain's lowlands, Foster (1974) concluded that the formation 

consisted of layers with different hydraulic characteristics. 

Recession equations 

Traditionally, the best-known equation for describing the recession 

curves is simple exponential. Perhaps due to its relative ease of application in 

graphing and modeling formulation, it has gained general acceptance. 

According to this equation, during the period of no excess precipitation, 

base flow recedes exponentially with time. Therefore, at least part of the 

recession limb can be expressed by: 

Qt — Qo 

or 

(2.2A) 

(2.2B) 

where 

Qo = initial discharge 

Qf = discharge at t time units later 
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Q 
k = recession constant after one time unit) 

Qo 
a = recession factor 

t = time elapse between QQ Qt (usually in days) 

Equation 2.2A can be obtained from equation 2.2B by substituting k for 

. According to Toebes and Strang (1964), the first theoretical derivation and 

application of both equations is ascribed to Maillet (1905), although his 

extensive and practical work has not been sufficiently acknowledged by 

hydrologists (Appleby, 1970). Since then many investigators have used these 

equations for base flow analysis (Horton 1933; Barnes, 1939; Werner and 

Stmdquist, 1951; Howe, 1966; Singh and Stall, 1971; Foster, 1974; Nutbrown and 

Downing, 1976; Boughton, 1986; Loganathan, et al., 1986). 

According to the U.S. Army Corps of Engineers (1956), equation 2.2A 

also approximates the recession rate of streamflow generated by snowmelt. 

James and Thompson (1970) proposed a method based on a least squares 

procedure to estimate recession constants for both base flow and interflow. He 

then successfully tested his model on over 20 streams in Kentucky. 

Exponential decay implies that early decline is rapid while later 

decrease is slower. A plot of Qf. in equation 2.2A versus time on semi-

logarithmic graph paper (Qt in log axis), yields a straight line with the slope 

equal to log k. The application of exponential decaying functions to natural 

processes is common. They have been successfully used to model the decay of 

radioactive substances, infiltration, population decline of microorganisms, 

reduction of drug concentration in the blood, and so on. 

The recession constant { k )  is always less than one, and varies within a 

narrow range, usually 0.80 to 0.99 with a considerable "bunching" (Martin, 
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1973) when it approaches unity. Langbein (1940) indicated that ft is a function 

of drainage density. The effect of evaporation on k was investigated by 

Weisman (1977). Experimenting on three basins, he showed that k declined 

inversely with pan evaporation according to a convex-upward curve. 

The small range of k reduces its sensitivity to be used for modeling 

purposes. Nonetheless, k has been used by many researchers to characterize 

the base flow recessions (Brown, 1965; Howe, 1966). ICnisel (1963) used the base 

flow recession constants of streams in the south-central United States to 

compare the geologic featxires of their basins. 

There is an alternative to the recession constant k, however, called the 

storage delay factor. It is denoted by K, and defined as the time taken for 

discharge to recede by a factor of 10 (i.e. one log cycle) (Singh and Stall, 1971). 

This index has a Avide range and can be more accurately evaluated from semi­

log recession cixrves. It is also visually significant in that its magnitude is a 

meastire of stability and sustainability of base flow. 

Using the definition of K (i.e. Qt = O.IQ) when t = K) together with 

equation 2.2A yields 

0.1 Qo = Qo 
-1 

or =0.1=^ ft = 10^ orijr=-1/logft (2.2C) 

For example, if ft = 0.9 then K = - V  log 0.9 = -1/ -0.04576 = 21.85 days. 

Equation 2.2A can be written as 

Q,=Qo(10)«^ (2.2D) 

As will be seen later, K is also related to the most important aquifer 
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parameter, namely diffusivity, which is defined as transmissivity divided by 

storage coefficient. 

Martin (1973) introduced the concept of half-flow period, the time 

required for base flow to halve. It is exactly the same notion of half life as in 

nuclear physics and does not seem to offer more information than the storage 

delay factor. 

Although a simple exponential equation has been widely used, it does 

not fit all practical recession cases encountered. Clausen (1992) examined 

equation 2.2A to characterize the base flow recession periods for two Danish 

streams. He concluded that the equation = B + Ck* can explain the behavior 

of these streams much better. B and C are constants within each recession 

period. Petras (1986) pointed out that equation 2.2B represents the depletion 

from homogeneous aquifers. In heterogeneous cases, the recession curves 

could be defined by superposition of a number of simple exponential equations 

Qt - Qoi ® Qo2 ̂  + + Qon ® (2.3) 

Foster (1974) showed that the recession of two streams could be split into 

three log-linear segments. Based on an investigation of many streams in 

Britain, Nutbrown and Downing (1976) noted that the semi-logarithmic plot of 

base flow recession, even for streams draining a homogeneous aquifer is not a 

single straight line, but rather a curve. This curve can be represented by 

superposition of several exponential terms as 

oo 

Qt =  ̂ (2.4) 
i=l 

where ^ are the recession constants and are coefficients dependent only 
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upon the initial base flow value (QQ),  and the original distribution of 

piezometric head in the aquifer. In practice, only a few terms of the equation 

are reqxiired. Such a form can be used to fit empirically the observed base flow 

recession curve (Figure 2.3). In addition to cases that can be approximated by 

different exponential decay equations, there are more complex situations that 

need to be treated otherwise. A number of equations have been proposed 

accordingly, some empirical, but most of these equations are based on linear 

solution of the Boussinesq basic differential equation governing the dynamics 

of groundwater, under simplifying assumptions (Hall, 1968). Table 2.1 

contains some of these equations. 

In a thorough study of the streams of Japan, Ishihara and Takagi (1965) 

derived low flow equations mathematically. They concluded that the base flow 

is supplied by two distinct sources, namely confined and unconfined aquifers. 

Q = Qc+Qm (2-5) 

The confined component was expressed by the exponential function 

(2.6) 

and the unconfined component was calculated as a reciprocal function. 

a and c are constants dependent upon aquifer characteristics. 

They further showed that since recedes faster, low flow during a long 

period is mainly sustained by the unconfined aquifer. Ineson and Downing 

(1964) concluded that the nonlinear response of aquifers can be due to multiple 

sources, carry-over storage fi*om a previous recharge period, spatial variations 
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Figure 2.3 A. Empirical fit to recession of the River Wylye at Norton 
Bavant, U.K., in 1970, using superposition of three 
exponential terms. 

B. Three-straight line fit to the same data (Nutbrown and 
Downing, 1976). 
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Table 2.1. Various proposed recession equations. 

Equation Description Proposed/reported by 

1- Qf = Qo® Double exponential Horton (1933) 

Hyperbola for spring 

discharge in Europe 

MaiUet(1905) 

3.e,=A+(Qb-A)e-°' Ice melt exponential Wicht (1943) 

4.Q,=^+6 Ice melt hjrperbola for Toebes and Morrissey 

stream fed by ice and (1969) 

snow 

6.(1, = ̂ ^'^}+B 
{ 1 + c t f  

Special version of 

Equation 2 

Hall (1968) 

6.«,=eoie'°"'+«02e"°"' Based on principle of 

linesir superposition 

Hall (1968) 

Empirical Indri (1960) 

8.Qt = B + Ct^ Empirical Clausen (1992) 

Qt = streamflow after time t in cfs or m^/s (1 cfs = 0.0283 m^/s). 

Qq = initial streamflow in cfs or m^/s. 

t = time interval between QQ Q^, usually in days. 

e = natural logarithm base. 

a, n, c, A, b, B, ay a^, and C are constants. 
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of evapotranspiration, and presence of storage in banks and flood plain. Riggs 

(1964) showed that the combination of two linear sources generates a nonlinear 

recession. Situations where the base flow is provided by discharge from two 

different aquifers have been reported by Kilpatrick, 1964; Toler, 1965b; Kunkle, 

1968; and Riggs, 1985. Bingham (1982) reported that most streams in Alabama 

received water from two or more aquifers. 

Storage volume 

The storage volimie which supplies base flow is the result of integration 

of the recession equation within the time period between zero and infinity 

(Boughton, 1986). 

"So = Qb + + Q2 ^3 — 

or (SQ = Qo+ Qb — 

or SQ = QQ (1+^ + ̂ ^ + • • *) 

Since ^ < 1 => lim(l+ ̂  + ^^ + • • •) = —^ therefore, Sn = (2.8) 
1 - k  1 - k  

This equation relates discharge and storage in a linear fashion. Such 

an aquifer system can be regarded as linear reservoir. The linearity of the 

storage with respect to discharge is implicit in simple exponential model 

(Foster, 1974). 

In general, the relationship between discharge and storage is non­

linear (Langbein, 1938). One reason is that base flow discharge is composed of 

two components, bank- and basin-storage, although some authors regard 

bank-storage as a part of channel flow (Singh, 1968). Curvilinear reservoir is 

also typical under more heterogeneous, anisotropic conditions, or in cases 

where aquifers of different nature (artesian and water table) are contributing 
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to discharge (Riggs, 1964), and in small and relatively wet basins 

(Boughton, 1986). According to Boughton (1986) the simplest nonlinear form of 

storage is 

Q = aS^ (2.9) 

a and b are constants. He used this equation along with curved base flow 

recessions for a stream in Queensland, Australia, to quantify the storage. He 

concluded that relating base flow to the storage provides more information 

than relating base flow to flow on the previous times. Kunkle (1962) 

determined that the discharge from basin storage is largely controlled by the 

texture of surficial deposits. 

Bank storage 

Bank storage refers to the variable amount of water stored temporarily 

in the stream banks during rising flood stage (Todd, 1955). If the soil moisture 

is below field capacity, part of this water supplies the moisture deficiency of the 

soil. 

During abatement of stream stage, the hydraulic gradient is reversed, 

and part of the water retiirns to the stream. This water is released relatively 

faster than basin outflow. If tp denotes the time to peak of the flood 

hydrograph, a major portion of the bank storage is depleted within 1.5 tp 

(Singh, 1968). In general, only small strips adjacent to the stream banks are 

involved in this exchange. There are situations, however, where a very 

pervious and extensive flood plain provides a large supply for base flow. The 

permeability of the soil-water interface at the banks and the porosity and width 

of the permeable deposits along the stream greatly influence the amount of 

bank storage. 
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The flow of water into and out of bank storage can be predicted. Cooper 

and Rorabaugh (1963a, b) derived equations to quantify inflow and outflow of 

bank storage for finite and semi-finite aquifers. Rorabaugh (1964) estimated 

the component of flow to and fi-om bank storage fi-om river fluctuation data. 

A distinction between bank storage and basin storage can be made based 

on their origin. While the basin storage results from the groundwater 

recharge due to precipitation or snowmelt and infiltrability of surficial 

deposits, the bank storage is generated by rising stage. 

During the recharge of bank storage, the normal base flow tends to pond 

up near the banks. This process reduces the basin storage gradient toward the 

stream. Therefore, the base flow decreases gradually and may even stop for 

some time. 

Although the volume of bank storage at a certain time can be 

remarkably less than that of basin storage, the annual discharge from this 

source may equal or even exceed the share from basin storage due to frequent 

contribution and higher rate of discharge (Kunkle, 1962). The concept of bank 

storage has been discussed by Todd (1955). 

In addition to its effect on the base flow hydrograph, bank storage has a 

pronounced influence on attenuation of floodwaves (Freeze and Cherry, 1979). 

It is also a source of delayed flow during the recession of ephemeral streams 

(Riggs, 1985). 

Flow duration curves 

Flow duration curve is a cumulative frequency curve, showing the 

percentage of time that a specified discharge was equaled or exceeded. Hickox 

and Wessenauer (1933) and Foster (1934) discussed its earliest application in 
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hydroelectric studies. It was adopted by USGS for hydropower investigations 

around 1920 and soon after became a familiar and useful medium for other 

purposes, such as site selection for industrial units and treatment plants 

(Searcy, 1959), low flow and water supply investigations (Singh, 1971), and 

sediment transport computations. It may also be used as a convenient means 

to display graphically the comparative variability of the streamflows (Riggs, 

1985), and the influence of any significant change such as impoundment or 

diversion on the basin. While the upper end of duration curve has been used 

for flood studies (Beard, 1943), the lower part can be used for low flow 

investigations (Cross, 1949). Flow duration curves are almost always plotted 

based on mean daily discharge for as many years as data are available. The 

longer the period of data, the more reliable interpretation can be made. If, 

instead of daily discharges, monthly or annual values are used, then different 

duration curves are obtained (Searcy, 1959; Figure 2.4), although the effect of 

varying time scale is not identical for different streams. 

The slope of the lower end of the curve is indicative of variability of low 

flows and basin storage capacity. A steep slope indicates that low flows recede 

rapidly and so they are not dependable. A flat slope usually means a well-

sustaining low flow stream, fed from sufficient storage to maintain a relatively 

high base flow during dry periods (Schwob, 1958; Searcy, 1959). 

Common indices of low flow taken from a duration curve are: 

streamflows that are exceeded 50%, 84%, 90%, and 95% of the time (Q5o%, Q84%, 

Qqq%, Q95%)- Q90% or Q95% from long-term duration curves are sometimes 

comparable to special points (such as Qy^io) on the low flow frequency curve. 
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Figure 2.4. Flow duration curve for Bowie Creek near Hattiesburg, Miss., 
1939-1948, using daily, monthly, and annual streamflow (Searcy, 
1959). 
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To compare two or more streams in terms of low flow, the effect of basin 

size should be removed. Hence, indices can be standardized by basin area and 

expressed as discharge per unit area or depth per unit time (e.g. cfs per square 

mile or inches per day). Sometimes low flow data are transformed to 

dimensionless values by dividing each individual low flow by mean annual 

flow (Qm). 

Cross (1949) studied flow duration curves of 141 stations in Ohio and 

chose (Qgo/area) (in cfs per sq. mi.) as an index to represent the effect of 

geology. Based on the data from 120 gaging stations in Illinois, Singh (1971) 

proposed a simple model for estimation of flow duration at ungaged sites. His 

model, which relates the discharge to the basin area, is 

Qp=cA'' (2.10) 

where Qp = the discharge which p percent of time is equaled or exceeded 

A = basin area 

and c and n are constants. 

Kunkle (1962) utilized the concept of flow duration curve to establish a 

base flow duration curve for each of six basins within the state of Michigan. 

He also used these curves to compare the basins in terms of reliability of base 

flow. Fxirthermore, base flow duration curves allowed him to develop a 

method for partitioning the base flow into two distinct components, bank 

storage and basin storage. 

Factors affecting duration curves 

According to Todd (1957), climate and basin characteristics strongly 

influence the shape of duration curves. According to Singh (1971), 
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physiography is the major factor influencing the general shape of duration 

curves, and within a relative homogeneous physiographic area, the size of the 

drainage basin is the chief determinant of the shape of the lower half of the 

curve. 

Limitations 

1. According to Riggs (1985) flow duration curve should not be regarded as 

a frequency curve for two reasons: (1) mean daily flows, based upon 

which the curve is drawn, follow a known pattern throughout the year 

(not random) and (2) they are serially correlated. 

2. When daily streamflow data are arranged in descending order, the 

chronological sequence of the data is distiurbed. 

3. The effects of years with unusually high or low daily flows are obscured. 

Low flow frequency analysis 

Theoretical distributions 

Frequency analysis involves the assumption of a theoretical probability 

distribution for the data; testing goodness of fit; and, if the fitness was 

satisfactory, using the distribution for estimating the probability of occurrence 

of large events, which is otherwise not directly possible from the data. 

Sometimes a confidence interval is calculated for the estimated low flow. 

For flood frequency analysis, there is a recommended procedure. 

According to the U.S. Water Resources Council (1977), the log-Pearson type III 

distribution was recommended to be adopted by all federal agencies. For low 

flows, however, there is no single widely acceptable method. Some theoretical 

distributions have been fitted to the annual minimum flow. In a study of low 
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flows of streams selected from aH parts of the United States, Matalas (1963) 

investigated the suitability of four theoretical distributions for annual 

minimum flows. This study demonstrated that the minimum discharges can 

be represented equally well by either the Gumbel or Pearson type III 

distributions. Joseph (1970) concluded that the 3-parameter gamma 

distribution was the best of the five distributions used for frequency analysis of 

14-day low flows of Missouri streams. 

Tasker (1987) compared four distributions for estimating the 7-day, 10-

year and 7-day, 20-year low flows for 20 long-term stations in Virginia, and 

showed that the log-Pearson type III and Weibull had lower mean square 

errors than Box-Cox or log-Boughton methods. A complete discussion of the 

mathematical properties of log-Pearson type III was given by Bobee (1975). 

Gumbel (1958) discussed the extreme value type III distribution. Later, 

the technique was applied by Ewart and Brutsaert (1972) to study 

characteristics of drought low flow of the Mekong River. McCormick (1984) 

found that Gumbel type III and Weibull distributions are unacceptable for the 

analysis of low flows. He recommended the log-Boughton distribution for this 

purpose. Vogel and Kroll (1990) found that sequences of 3-, 5-, 7-, 14- and 30-

day low flows in Massachusetts can be estimated quite well by a two-parameter 

log-normal distribution. 

According to Loganathan et al. (1986) the major limitations of statistical 

distributions is that they do not take into account the physics of the hydrologic 

process. 

Gottschalk and Perzyna (1989) combined the exponential recession 

function with Gumbel Extreme Value Type I to derive a so-called "physically 
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based distribution function." They tested their model on six basins in southern 

Norway and concluded that the applicability of the model is generally limited to 

the minimum flow with higher return periods. 

Graphical frequency curves 

Hydrologists frequently use graphically-fitted low flow frequency curves, 

which are not bound to a particular form of the distribution. This seems 

appropriate especially in case of low flow, where basin characteristics has 

large influence on the shape of frequency curve (Riggs, 1968). 

A frequency curve relates magnitude of low flow to frequency of 

occurrence. Given a streamflow record, the annual average Tmnimnm flow 

for various numbers of consecutive days (n) can be obtained by computer and 

then each group of n-day low flow data sets is ranked in ascending order. 

Graphical frequency curve will be prepared for each group separately. After 

ranking, each individual discharge is assigned a probability (or recurrence 

interval) by means of a plotting position formula 

•n ^ -nr tl-l e-g", P = 7 or Rl = (2.11) 
n-1 m 

where P = probability 

RI - recurrence interval 

n = number of data 

m = the order number. 

Then the magnitudes of low flows are plotted on the log axis versus 

probability, and the best smooth line is drawn to include plotted points. Figure 

2.5 shows such a plot for the Des Moines River at Fort Dodge. The reliability of 

this method is determined by the length of record. Typically, low flow 
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Figure 2.5. Frequency curves for Des Moines River at Fort Dodge, Iowa 
(1946-1988). Data used in this plot are taken from Fischer et al. 
(1990). 
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frequency curves are convex downward. There are cases, however, that 

frequency curves have distinct irregularity due to complex basin lithology, 

high evapotranspiration rate, or due to the existence of "several aquifers, not 

all of which contribute at all times" (Riggs, 1985). 

Among the low flow indices which may be taken from a frequency curve 

is the seven-day ten-year low flow (QY^IQ), the lowest average discharge of seven 

consecutive days which is expected once in a decade. This index is widely used 

in effluent dilution computations. 

Velz and Gannon (1960), in analysis of drought flow of 81 Michigan 

streams, used a variability ratio as an index of stability of the stream. This 

index is defined as the ratio of the 10-year low flow over the most probable value 

(taken as the average annual minimum). A higher ratio indicates a more 

stable stream. 

Aquifer-stream interactions 

Most aquifers are somehow connected with surface water in the form of 

seepage to or from streams, discharge as springs, and exchange with lakes 

and wetlands (Olmsted and Hely, 1962; Miles, 1985). A variety of mathematical 

models have been proposed for quality and quantity evaluation of interacting 

surface-subsurface water systems (Marino, 1973; Rushton and Tomlinson, 

1979; Miles, 1985; and Guymon et al., 1992). Merriam (1948) correlated low 

flows with water levels in observation wells to make short-term forecasts of 

streamflow. 

Rorabaugh (1960) derived an equation to relate the so-called hydraulic 

diffusivity of an aquifer (the ratio of transmissivity to the storage coefficient, 

TIS) to the water level declination in the observation well as follows. 
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T  ̂  4 a ^ l n ( f e i / / i 2 )  0 . 9 Z ^ a ^ \ o g i K l h ^ )  
S 7t^{j:2—t-\) ^2~^l 

where T = transmissivity of the aquifer (ft^/day) 

S = storage coefficient 

a = half width of the aquifer (ft) 

= water level (ft) at time (days) 

= water level (ft) at time t2 (days) 

and there are simplifying assumptions, as usual, underlying the derivation of 

equation 2.12. 

Later, Rorabaugh (1964) introduced the concept of the critical time 

defined as the time required for the recession curve to become a straight line, 

and calculated by the following relationship. 

t^=Q.2c?SlT (2.13) 

After the critical time t 2 - t i l \ o g { h i l h ^ )  can be replaced by K ,  and equation 

2.12 is written as (Bevans, 1986): 

T 0.933a2 
s—^ 

where K = ——r- = storage delay factor. 
log cycle 

Due to difficulties in determining the accurate value for a, Bevans (1986) 

used T! a^S (in dayi) as a lumped parameter to characterize the stream-

aquifer properties in 18 selected basins in Kansas. In this case there is no 

need to determine a. He also stated that if the base flow recession curve after 

critical time declines exponentially and is not affected by any factor other than 

aquifer properties, then the required assumptions in derivation of equation 

2.12 hold true. 
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Equations 2.13 and 2.14 can be written respectively as 

T 0.933 
a^S K 

0 . 2 K  
0.933 

(2.15) 

(2.16) 

Dillon and Liggett (1983) studied the interaction between an ephemeral 

stream and an unconfined aquifer in southern Australia using the boundary 

integral method. Aron and Borrelli (1973) developed a model to predict base 

flow contribution to streamflow for a watershed in Pennsylvania. Their model 

was based on the analogy between drainage toward tile lines (Brooks, 1961) and 

seepage toward streams, Naney et al. (1978) improved the applicability of the 

model to be usable on ungaged sites by calculating the required model 

parameters from results of observation wells, pumping tests, and topographic 

maps. 

Seasonal variability 

During the summer periods, evaporation from the stream channel and 

aquifer, and evapotranspiration from riparian vegetation, may influence base 

flow by increasing the recession rate significantly. In winter, however, losses 

due to evapotranspiration are minor. Therefore, base flow recessions for 

winter represent more closely the discharge from groundwater. However, for 

many streams it is difficult to find sufficient long recession periods during the 

winter due to frequent precipitation or freezing. If possible it is common to 

define separate recession curves for summer and winter (Riggs, 1985) for the 

sake of comparison, although summer recessions are more critical because of 

their coincidence with the high demand period. Riggs (1964) described other 

factors that cause variability in recession rate. 
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Master base flow recession curves 

Hydrographs of different peak magnitudes in a basin have different base 

flow recession curves because of variation in storage (Toebes and Strang, 1964). 

The individual recession segments can be synthesized into a full recession 

CTirve known as master base flow recession curve (MRC). In effect, an MRC, 

as an envelope to all recession segments, displays the general recession 

behavior of the basin. Five methods available for generating an MRC are: 

Method 1. The linear MRC 

In basins with alluvium surficial deposits and a single, uniform water 

table aquifer where the exponential decay can be assumed, individual 

recession segments are plotted on separate transparent sheets. They are 

ranked then according to discharge and replotted on a coordinate system by 

horizontal moving. A common straight line on semi-log plot can be drawn to 

be tangential to the lower ends of these segments. This line represents a linear 

master base flow recession (Wilson, 1974). Bevans (1986) used this method for 

Big Hill Creek near Cherryvale, Kansas (Figxire 2.6). 

Method 2. The matching strip method 

This method involves plotting selected recession segments on tracing 

paper with the same coordinate scales as the hydrographs. By superposition, 

they are shifted horizontally until the main parts overlap (Toebes and 

Morrissey, 1969) and make a continuous alignment. A mean line connecting 

the overlapped parts represents the master recession curve. Riggs (1985) used 

this method for the James River, Virginia (Figure 2.7). Methods 1 and 2 can be 

computerized in order to minimize errors due to personal judgement. 
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Figure 2.6. Linear master recession curve for Big Hill Creek near 
Cherryvale, Kansas (Bevans, 1986). 
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Figure 2.7. A master recession curve for James River, Virginia, obtained by 
the matching strip method (Riggs, 1985). 
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Method 3. The tabulation method 

In this method, which in principle is the same as the strip method, the 

data for each recession segment are arranged in a vertical column. The 

columns are then adjusted vertically until the discharges in a horizontal line 

match approximately. The discharges on each row are averaged and used to 

plot a master recession curve. Johnson and Dils (1956) and Toebes and Strang 

(1964) described this method. 

Method 4. The correlation method 

Suggested by Langbein (1938), this method involves the plotting of 

versus on either natural or log scale and the regression line is drawn. This 

line is then transformed into a recession curve. Riggs (1985) used the method 

to synthesize a base flow recession curve for the Buffalo River, Tennessee 

(Figure 2.8). Saboe (1966) utilized this method to characterize summer base 

flow recessions for 94 streams in Iowa. The selection of appropriate value for n 

is usually based upon the length and variability of recession data. Table 2.2 

shows different values that have been used for n. 

Table 2.2. Different values for n that have been used in the correlation 
method. 

Year Investigator n (days) 

1938 Langbein 1 

1963 Knisel, Jr. 1 

1966 Stanlej' and DeWiest 1 

1966 Saboe 10 

1969 Toebes and Morrissey 5 

1976 Beran and Gustard 2 

1985 Riggs 10 
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Figure 2.8. Master recession curve for Buffalo River near Lobelville, 
Tennessee, obtained by correlation method (Riggs, 1985). 
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Figure 2.9. Schematic illustration of USGS method of generating a master 
recession curve: 
(a) selected near -linear recession segments; 
(b) plotting points corresponding to each segment; 
(c) the MRC, calculated by integration of line in b (Rutledge, 

1991). 
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Methods. USGSmethod 

This is an empirical, mathematics-based method with some similarity 

to the matching strip method, devised by the U.S. Geological Survey for 

regional aquifer system analysis program (Rutledge, 1991). It is established 

based upon the assumption that for each segment, the mean logarithms of 

streamflow data (log Q) varies in a linear fashion with the storage delay factor. 

The method involves searching several linear or near-linear recession 

segments (Figure 2.9a) and for each selected segment, plotting a point with 

mean of log Q's as y and K = ^ ^ as x coordinates. Then a least-squares 
A(logQ) 

straight line is fitted to the points (Figure 2.9b). The equation of this line has 

the form 

—^— = aaogQ)+b (2.17) 
A(logQ) 

Integration of equation 2.17 yields a second-order polynomial equation 

expressing time (t) as a function of log Q in the form of 

i = -^(logQ)2+6(logQ) + c (2.18) 
A 

This equation represents a parabola, the lower part of which is regarded as a 

master recession curve (Figure 2.9c). 

Since the above approach has been applied in this research endeavor, it 

will be described in more detail in the following chapter. 

Factors affecting low flow 

Several factors have an important effect on low flow rate and duration. 

In fact, low flow is a complex function of the interaction among (1) basin 

characteristics, (2) climate, (3) topography, (4) vegetative cover type, and (5) 

man-made influences. 
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Basin characteristics 

Although it is not visible, basin geology is the most import factor 

affecting types of aquifer(s) and their features, such as transmissivity and 

storage coefficient. Extreme variations in lithology and structure may exist 

within a basin (Schneider, 1965). Moreover, the existence of faults and folds 

that interrupt the continuity and uniformity of rock types may convert a water 

table aquifer to a confined one at the center of synclines (Fetter, 1980) or may 

create springs of differing capacity. 

In limestone and dolomite terrain, sinkholes and karst springs make a 

significant contribution to low flow. Generally, spring-fed streams have 

dependable low flows. However, not all springs flow urdformly, and their rate 

of discharge depends on the hydraulic conductivity, storage coefficient, and 

extent of the feeding aquifer. Some limestone aquifers drain rapidly because of 

their well-developed system of connected fractures and solution channels. 

Sometimes two different types of aquifers (confined and unconfined) 

contribute to supply low flow, causing the low flow period to last longer. Riggs 

(1985) has discussed an example of this situation. In a hydrogeologic study of 

the Four Mile Creek in east central Iowa, Kunkle (1968) concluded that base 

flow in this creek is supplied by two interconnected aquifers. The upper is 

unconfined, composed of loess, which is underlain by a semi-artesian aquifer 

in alluvial sand, silt, and clay. In a comprehensive study, Beran and Gustard 

(1977), while discussing the low flow characteristics of British rivers, 

emphasized the need for incorporation of a geology index in the models 

developed for estimation of low flow on ungaged catchments. The effect of 

geology on low flow in Ohio has been discussed by Cross (1949), Cross and 
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Bernhagen (1949), and Schneider (1957). Johnston (1971) studied aquifer 

characteristics in the coastal plain of Delaware as indicated by base flows. 

Surficial soils have a dominant influence in low flow generation and 

basin response. "They have the first opportunity to absorb, store, or release 

water" (Saxton and Shiau, 1990). Hence they control the rate of recharge to and 

discharge from aquifers. Howe (1968) introduced a soil index, I, to represent 

the average permeability rate for each soil type in a soil association area. 

Surficial soils of Iowa were scored on a six-point scale, based on a scale of one 

for very slow to six for very rapid permeability rate. 

Basin area is the simplest available parameter that is logically related to 

low flow. Many investigators have correlated flow indices with this parameter 

(Ginsti, 1962; Howe, 1968; Lara, 1979; Bingham, 1982; Riggs, 1985). As 

common sense suggests, a stream with larger basin area has higher low flow. 

There are some exceptions, however. Glymph and Holton (1969) found three 

different relationships between the mean annual runoff and basin area, as 

shown in Figure 2.10. According to these authors, the inverse response of the 

Tombstone basin in Arizona is due to the fact that the streams in this region 

are influent. The same reason can be valid for streams in Texas, where 

channel gains and losses are nearly balanced. In a study of low flow of two 

adjacent streams in northern Vermont, Comer and Zimmerman (1969) found 

that the stream with a smaller basin area had higher low flow per unit area. 

Since the climate, geology, and land use were virtually identical, they also 

concluded that the difference in low flow was due to topography and soil. 

Main channel length has been used as a basin characteristic in low flow 

modeling, although it is correlated with drainage area (Orsbom, 1974). 
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Figure 2.10 Relationship between mean annual runoff and basin 
(Glymph and Holton, 1969). 
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Higher altitude is usually associated with more precipitation, which is 

in favor of more aquifer recharge and hence more low flow. The role of 

altitude is especially crucial in mountainous basins, where orographic 

precipitation and snow storage is prevalent. Figure 2.11 illustrates the 

relationship between mean elevation and minimum runoff for three basins in 

Middle Asia. 

The effects of other basin characteristics such as mean slope and 

drainage density have been investigated (Trainer, 1969) and used in correlation 

(Carlston, 1963; Thomas and Benson, 1970). The influence of basin shape and 

drainage network cannot be quantified, since they are qualitative features. 

Climate 

Two major climatic factors affecting low flow are precipitation and 

temperature (Riggs and Harvey, 1990). While the former serves as an input to 

the flow-generating process, the latter regulates the type of input as rain or 

snow and converts part of the input to evaporation. The amount of 

precipitation and its temporal distribution, especially during the season when 

the low flow prevails, can increase low streamflow. In effect, streamflow 

follows a roughly similar pattern as the rainfall. Heavy rainfall or gradual 

melting of snowpack result in principal recharge of the aquifer and assure a 

reliable low flow. 

The rate of evapotranspiration and evaporation from the stream channel 

and shallow groundwater is controlled by temperature. If the channel is wide 

and shallow and the rate of overall evaporation exceeds the base flow rate, the 

stream may go dry for some time (intermittent stream). Low temperature, on 

the other hand, reduces the rate of groundwater movement toward the stream 
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Figure 2.11 Relationship between mean basin elevation and minimum runoff 
of five mountainous regions of Middle Asia (McMahon and Diaz 
Arenas, 1982). 
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due to increased viscosity or freezing (Rogers and Armbruster, 1990). In areas 

where subzero temperatxires dominate, base flow may completely cease under 

extreme freezing conditions, and low flow becomes zero. In such areas low 

flow periods during the winter may be longer than summer (Gottschalk and 

Perzyna, 1989). 

Topograohv 

In addition to the interactive influence of topography on climate, basins 

with high topographic relief and steep slopes tend to have fast hydrologic 

response to precipitation. In flat basins with minor relief, streamflow rate is 

relatively slow, allowing for more infiltration and evaporation loss to occur. A 

visible characteristic of such basins is the presence of lakes, ponds, wetlands, 

peatlands, and swamps. Streams often terminate in lakes or recharge the 

aquifers. In special cases, no surface runoff even leaves the basin (Riggs and 

Harvey, 1990). 

Like other surface storages, the presence of large surface water bodies 

gives the impression that the existence of wetlands in a basin is effective in 

supporting low flows and recharging aquifers. This is true only if there is 

reason to believe that it is connected to regional groundwater (e.g. wetlands in 

areas of high precipitation). Otherwise it may be the result of a local perched 

water table. Brooks et al. (1991) stated, "Wetlands actually can be isolated from 

the regional groundwater system and can prevent or impede groundwater 

recharge." 

Not all lakes should be viewed as recharge sites for the groundwater. 

Siegel and Winter (1980) indicated that in Williams Lake, Minnesota, the 15 

percent recharge contribution of groundwater to the lake is balanced by an 
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equal percentage of seepage to the groundwater. There are lakes that act even 

as discharge zones, gaining a considerable amount of water from 

groundwater (Winter and Woo, 1990). Since without detailed knowledge of 

basin geology it was not possible to determine the nature of each individual 

body of water, the area covered by lakes or wetlands within each drainage area 

was not considered as an effective factor on low flow in the present research. 

Vegetation and land use 

The influence of vegetal cover on low flow is attributed to its extensive 

evapotranspiration. In arid and semiarid regions, 85 to 90% of received 

annual precipitation is evaporated or transpired (Brooks et al., 1991). 

Riparian vegetation which often has its root system in the proximity of shallow 

water table can transpire at almost potential evapotranspiration rate 

throughout the growing season, using a large amount of groundwater. 

Phreatophytes are another group of deep rooted plants which are found in flood 

plains and along the banks of ephemeral stream channels. They have the 

ability to extract water from the capillary fringe of shallow groundwater. 

Individuals of this group, such as cottonwood, willow, alder, and saltcedar can 

consume large quantities of groundwater. Table 2.3 shows the annual 

estimates of consumptive use of phreatophytes in the southwestern United 

States. 

Significant land use changes that alter the extent and tjrpe of natural 

vegetation on a drainage basin can influence low flow. Examples include 

conversion of forests and prairies to farmlands, change of cultivated crops, 

and deforestation. According to Brooks et al. (1991) experiments in controlled 

basins show increases in base flow after logging and forest harvesting. 
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Table 2.3. Estimates of annual evapotranspiration of some phreatophs^tes 
in the Southwestern United States (Brooks et al., 1991). 

Species Depth of 

water table (ft) 

Annual evapo­

transpiration (ft) 

Reference 

Saltcedar 5 2.2 van Hylckama 

7 1.5 (1970) 

9 1.0 

Cottonwood - 1.1 Horton and 

Campbell (1974) 

Clear cutting of riparian vegetation, though not justified by ecologists, 

seems to be most effective in low flow augmentation (Dunford and Fletcher, 

1947). This is due to reduction of interception and evapotranspiration. In an 

analysis of discharge of nine small streams in Virginia, Riggs (1965) 

concluded that discharge per square mile was directly related to the 

percentage of drainage basin cleared of trees and bushes. In particular, 

clearing of land adjacent to stream channel (riparian tract) was more effective 

in increasing summer and fall base flow. Pereira (1973) discussed a case of 

clear-felling some 30 million acres of evergreen woodland in Western 

Australia dominated by deep-rooted species (Eucal3rptus) and converting it to 

cropland. The outcome was a raised water level as expected, but this was 

accompanied by the unwelcome existence of salt springs. 

Human activities 

Man-induced changes in the basin can significantly disturb streamflow 

in general and low flows in particular. One purpose of any impounding 



www.manaraa.com

56 

structure is redistribution of streamflow in time and space by storing the 

floodwater to augment low streamflow during the dry periods. Impoundment 

per se also tends to recharge groundwater by induced infiltration, and 

therefore increases low flow. 

Continuous heavy pumpage adjacent to effluent streams may develop a 

cone of depression which lowers the water table and reduces the base flow 

accordingly. 

Urbanization is a major human modification in the hydrologic cycle. 

Altered steep slopes, increased impervious surface areas (such as streets, 

roofs, parking lots, and pavements) and improved surface drainage networks 

by installation of storm sewerage all inhibit infiltration and thus reduce base 

flow. By analysis of six streams in Long Island, Simmons and Reynolds (1982) 

concluded that urbanization reduced base flow from 95% of total annual flow to 

20% . They further noticed that base flow in an adjacent urbanized but 

unsewered area had decreased to 84% of total annual flow. This indicates the 

major influence of storm and sanitary sewerage on base flow fluctuation. 

Some investigators were not certain about the effect of urbanization on 

low flow. Hirsch et al. (1990) stated that; 

In general, it is not intuitively apparent whether urbanization can 
be expected to increase or decrease low flows. Decreased 
infiltration caused by increased imperviousness should decrease 
base flow. However, the existence of septic tanks, the possibility of 
[leakage from sewer system] and increased infiltration and dry-
weather runoff from lawn watering all have the potential to 
increase streamflow during dry periods. 

Furthermore, low flow is increased in areas where drinking water is 

imported from adjacent basins and treated waste water is released in the 

urbanized basin. 
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Other activities, such as irrigation, drainage works, and mining 

activities have different effects on low flow magnitude, depending upon the 

local situation, and should be studied as special cases. 

Low flow augmentation 

Low flow augmentation refers to any management strategy that can be 

implemented to increase the magnitude of low flow. Since low flow in streams 

is sustained by groundwater, all management practices must be somehow 

effective in recharging aquifers during the wet season. One major practice is 

the use of instream structures, either temporary or permanent, to retain 

water, thus encouraging infiltration to the floodplain and recharging the local 

aquifer(s). Moreover, they are potentially beneficial in terms of regulation of 

storage and release. Other practices include management of rangeland and 

upland vegetation, as well as detention of upland runoff. 

Low flow augmentation is one way of controlling instream water quality 

(Dougal, 1969), since stream water quality is directly related to discharge 

magnitude. Ponce and Lindquist (1990) prepared an excellent review of the 

subject. 

Low flow modeling 

One major application of hydrologic techniques in engineering 

hydrology is the prediction of streamflow regimes, especially the extreme 

events, for design and operation purposes through mathematical modeling. 

In brief, mathematical models can be either theoretical or empirical. They 

may be further classified as deterministic or stochastic. While theoretical 

models are built based upon theories and physical laws, the empirical models 
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rely on the relationships between input and output. Deterministic models 

always generate the same response for the same input. If a random element 

is included in a model, it is called stochastic, which simulates processes with 

a stochastic nature. This means a different outcome is generated for each 

execution of the model. In practice, a hydrologic model can be a combination 

of different types. Several investigators have tried to characterize low flows 

through modeling efforts. 

Freeze (1972) examined the mechanism of base-flow generation with a 

deterministic mathematical model that couples three-dimensional, transient, 

saturated-unsaturated subsurface flow and one-dimensional gradually varied 

unsteady channel flow. 

Prakash (1979) developed a deterministic model to estimate low 

streamflow in an effluent stream. His approach is analytical with too many 

simplifying assumptions, which limit the applicability of the model. 

Verma (1979) used the base flow recessions coupled with nonlinear 

storage routing equation to determine low flows for effluent streams. 

Regionalization 

Regionalization refers to the possible grouping of streams and their 

basins based on their homogeneity in climate, topography, and similarity in 

response. According to U.S. Army Corps of Engineers (1975), a regional 

analysis is a statistical approach in which generalized equations, graphical 

relationships, or maps are developed. Such generalization can be used to 

estimate hydrologic information at sites where no observations have been 

taken (Singh and Stall, 1971), Regional analysis has been used in the United 

States to estimate both flood and low flow at ungaged sites. In an attempt to 
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generalize over 70 parameters of streamflow, including low flow indices, 

Thomas and Benson (1970) used data from four widely separated regions of 

western, central, eastern, and southern United States. Each streamflow 

characteristic was then regressed against up to 31 basin characteristics. The 

study showed that the most important parameters were basin size and mean 

annual precipitation. Also, the equations defining midrange of flows were 

more accurate than those of low flows. Riggs (1972) stated "the principal 

roadblock to regionalization of low-flow characteristics is our inability to 

describe quantitatively the effects of various geological formations on low 

flows—even where detailed geologic maps are available." 

Leith (1978) developed a regionalized relationship which relates annual 

7-day low flows for 85 gaging stations in British Columbia to basin-averaged 

physiographic parameters. His equation has 10 independent variables. 

Regression analysis 

Regression analysis is a widely-used statistical procedure for modeling 

in hydrology. It is usually employed as a functional relationship to relate a 

desired characteristic (a dependent or response variable denoted by y) to one or 

a number of easily determined independent or explanatory variables. If more 

than one independent variable is involved, it is called multiple regression. A 

multiplr regression equation can also be univariate, consisting of different 

exponential powers of a single independent variable. Multivariate multiple 

regression is utilized whenever the use of more than one independent variable 

statistically improves the estimation of a hydrologic response. Such a relation 

has a general type of y = fi.Xi,X2, rc„). A classic form of equation is 
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where Xi,X2, 3C„ are explanatory variables, Po,Pi,P2> Pn ^^e constants 

estimated by multiple regression analysis, and is a random error 

component. 

In hydrology a nonlinear form of multiple regression that seems more 

appropriate and is frequently used has an exponential structiire, such as 

(2.20) 

It can be transformed into a linear form by logarithmic transformation to 

simplify the analysis. 

logj'i = logPQ+Pilogxy, +p2 log:*:2i + +Pn logx„j +logBi (2.21) 

As Haan (1977) suggested, multiple regression analysis must be 

preceded by a great deal of study and thought regarding the form of the 

predictive model and the variables that should be used in the analysis. 

Otherwise, failure may frequently occur due to improper choices. Another 

point worth noting is that regression does not imply a cause-and-effect 

relationship between dependent and independent variables (Riggs, 1985). 

Independent variables should be selected such that there is no 

reasonable evidence that they are strongly related. The number of selected 

explanatory variables is an important factor. While inclusion of more 

variables may improve the derived regression equation in terms of reliability 

and reduction of standard error of estimate, it also increases the variance of 

the estimated dependent variable and reduces the practicability of the equation. 

Multiple regression equations are empirical and deterministic models 

used in regionalization of hydrologic processes. Calculation of relevant 

parameters in multiple regression models is tedious and time consuming. 
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Packages of various computer programs are available for this analysis, using 

forward selection, backward elimination, and stepwise procedures (Kite, 1977). 

Many investigators have used equation 2.20 to characterize low-flow 

indices at ungaged sites (Schwob, 1958; Carlston, 1963 and 1966; Howe, 1968; 

Bingham, 1982; Wandle, 1987). Carlston (1963 and 1966) attempted to correlate 

minimum flows with drainage density. Bingham (1982) used multiple 

regression methods to estimate the 7-day, 2-year and the 7-day, 10-year low 

flow of ungaged sites in Alabama using data from 109 gaging stations. He 

included in his equation three independent variables: basin area, mean 

annual precipitation, and a recession index. Wandle (1987) developed a 

multiple regression model based on data from 48 basins for the period of 1942-

1971 in New England to estimate Q7 2 and Q7 JQ for ungaged streams. His 

model included, as independent variables, mean basin elevation; areas 

underlain by till and bedrock, coarse materials, and fine deposits; and the area 

of lakes, swamps, and alluvium. 

Application of regression model 

According to Riggs (1968) a regression analysis usually involves (1) 

selection of factors which are expected to be used as independent variables, (2) 

describing these factors quantitatively, (3) choosing the type of regression 

model, (4) computing the regression coefficients, coefficient of determination, 

and standard error of estimate, (5) testing significance of the regression 

coefficients, and (6) assessment of the results. 

In multiple regression analysis two parameters are important in terms 

of reliability of estimated values of dependent variables, and usefulness of the 
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selected model: (1) standard error of estimate and (2) multiple coefficient of 

determination. 

Standard error of estimate 

Standard error of estimate of y in a multiple regression analysis is 

defined as standard deviation of the residuals about the regression plane. The 

sample standard error of estimate of a multiple regression model is given by 

Sg designates the range of errors which are expected about 68% of the time. 

Multiple coefficient of determination 

The sample multiple coefficient of determination is a statistic explaining 

how well a linear model fits a set of data. It represents the percentage of the 

sample variation of the dependent variable (y values) that is attributable to the 

regression model. Thus 

n 

( 2 . 2 2 )  

where = observed dependent variable 

= estimated dependent variable 

n = nximber of data points 

k = number of independent variables 

n 

total variation total variation 

or i22 = l-4 
St 

(2.23) 

where Sy = sample standard deviation of yi's 
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Equation 2.23 reveals that if standard error of estimate is close to the 

standard deviation of yi's, will be nearly zero, and the regression equation 

does not explain any variation in yi's (Haan, 1977). In other words, the 

smaller the standard error of estimate, the closer is to one, and the better 

the regression equation fits the data. One should notice that even though 

R^ =0 indicates no linear relationship between the variables, a curvilinear 

relationship may exist (Spiegel, 1961). 

Transformation 

Transformation refers to changes which are made to a set of data 

according to a certain formula to remove the skewness, reduce the kurtosis, or 

to make the data follow a given distribution. It is also used to linearize a non­

linear regression equation. Furthermore, in a regression analysis, 

transformation aims to achieve equal variance about the regression line 

throughout the range of data (Riggs, 1968). 

Transformation may be as simple as adding a constant term to each 

data point or taking the reciprocal, square root, or logarithm of the data. 

Equations of the form y = ax^ can be linearized by logarithmic 

transformation. Likewise, equations such as y = ab^ are linearized on semi-

logarithmic paper. Log-transformation is by far the most common form used 

to achieve linearity in hydrology, but it is not the only one. Prakash (1981) used 

a special transformation (SMEMAX) to normalize annual low flows of 66 

streams in the United States. Other commonly used tj^jes of transformations 

were discussed by Yeyjevich (1972) and Bowerman & O'Connell (1990). 
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CHAPTER 3. METHODS OF ANALYSIS 

This chapter is divided into two sections. In the first section, the 

methodology for quantification of the recession characteristics of stream 

hydrographs is discussed, and two master recession curves (MRC's) for each 

individual stream are developed. One MRC is obtained by analyzing observed 

recession periods of at least 10 days in the months of October through March, 

which span the winter season. The second MRC results from analysis of the 

remaining six months (April through September), which include the summer 

season. Likewise, two storage delay factors, one for summer and the other for 

winter, are calculated for each stream. In the second section, the procedure 

for modeling two low flow indices (Q84% and ^7,10) using multiple regression 

techniques is discussed. 

Recession characteristics 

Introduction 

In dealing with a large amount of daily streamflow record, the 

application of computers is inevitable. Although overreliance on computer 

models is not justified and failure to simulate the actual processes by 

inadequate models has created a skeptical attitude toward their usage, an 

appropriate computer program can nevertheless be of great help in scanning 

and analyzing the recession periods within the entire recorded data. 

A suitable computer program should have the ability to perform a 

comprehensive analysis of recession segments. It is also expected to offer a 

model with a sound mathematical basis to simulate the recession 

characteristics of streams in the real world. 
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Source of data 

The data used in this study were obtained from two different sources. 

Mean daily streamflow for 143 gaging stations was taken from an optical 

hydrodata compact disk (CD-ROM) prepared by Earthinfo Inc. from the USGS 

daily value data files. Information on basin characteristics and low flow 

indices was obtained from the most recent publication of USGS, Open-File 

Report 90-170, containing data through 1988 and authored by Fischer et al. 

(1990). 

Since any kind of regulating structure, such as a dam or reservoir, has 

the potential to change the streamflow regime, wherever such a structure had 

been built, that part of the data belonging to the post-regulation period was 

excluded from the analysis to maintain homogeneity. Also, the probable 

uptake of water for water treatment plants or input from wastewater 

treatment facilities has not been taken into consideration. 

From the 143 stations initially listed in USGS publications (see Table 1 in 

Appendix A), nine stations were excluded because their data were not either 

available or suitable to help calculate a storage delay factor. Three stations 

with no available data are S75, S121, and S125 (the last two are located in 

Nebraska). For the remaining six stations, the linear portion of each recession 

segment was either parallel to the time axis or was too short to define a slope. 

These stations are: S14, S51, S68, S102, S122, and S127. Figure 4,29 shows the 

location of these points. 

Computer program 

Various computer programs have been developed to simulate hydrologic 

processes. Since most of them are primarily concerned with peak flow, they 
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usually do not go further than base flow separation as far as low flow analysis 

is concerned. The lack of other comparable programs led the author to use a 

recently-developed computer program called RECESS, which deals specifically 

with the recession portion of hydrographs in detail. The USGS has developed 

this program and its associated model as part of a large regional aquifer 

system analysis. It was used for the first time for about 200 gaging sites in the 

Appalachian Valley and Ridge Piedmont Provinces in Virginia (Rutledge, 

1991). The unique featvire of this program is that it operates in an interactive 

mode, demanding a considerable amount of user input while being run. It is 

written in Fortran 77, based upon the mathematical logic described in the 

preceding chapter under the subheading of the USGS method. The program is 

capable of analyzing up to 50 selected recession segments for each gaging 

station from up to 90 years of daily streamflow data. This program was used 

in the first part of this investigation for two reasons: 

1. No alternative program capable of analyzing recessions in detail existed. 

2. Application of the program would serve to evaluate the model efficiency 

and reliability of its results. It would also help explore merits and 

possible weaknesses of the program. 

While it was a suitable program, some modifications were necessary to 

improve its applicability. Furthermore, it was only able to use input data with 

a special format, namely z files. Therefore, the daily streamflow data were 

transformed to z files with the aid of another program, named FORMAT, 

written in Pascal. Both programs are included in Appendix C. 

Model assumptions 

The following assumptions are basic to the model: 
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1. Each individual base flow recession on a logarithmic scale is a linear 

function of time. 

2. For each selected recession segment, the storage delay factor varies 

linearly with the mean logarithms of daily streamflows (equation 2.17). 

3. The master recession equation resulted from integration of equation 

2.17. Therefore, it is a half parabola relating time to the second order 

polynomial expression of logarithm of streamflow (equation 2.18). 

Input files 

Before the program RECESS could be executed, two input files were 

provided in its directory as follows: 

1. A file called "gaging" was prepared, containing station properties. For 

each station to be analyzed, one line existed with the following 

information: (1) latitude and longitude, (2) station number, (3) drainage 

area in square miles, (4) station file name, and (5) the station name. 

This file was read automatically by RECESS every time it was run. 

2. Since the program RECESS was only able to read mean daily streamflow 

data with a continuous format, the data files for each station were 

rearranged prior to its execution to remove headings and spacings, and 

to fill the blanks. The auxiliary Pascal program FORMAT was utilized 

to transform the mean daily streamflow data into a readable format for 

RECESS. Data files in the new format were specified by adding a 

lowercase z in front of the original file name (e.g., zSlO). These were the 

names which appeared in column 4 of the file "gaging." 
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Output files 

Four output files were established for the program RECESS to record the 

results. 

1. outrec: For each time the program was run, a line was added to this 

file, giving a summary of the session, including input file name, time 

period, coefficients of the MRC equation, and calculated minimum, 

median, and maximimi storage delay factors (in days per log cycle). 

2. outrecl: This file contained detailed output of the session, including 

best-fit regression lines of log Q vs. K and master recession curves. The 

file was overwritten for each subsequent execution of the program. 

3. outrec2: The time and log Q were recorded in this file for each analyzed 

recession segment. These data could be used to generate a master 

recession curve by matching strip method. This output file is also 

overwritten whenever the program is run again. 

4. outrecS: This file records the starting date and the number of selected 

days in each recession period used during the session. It was not 

overwritten and provided a sequential, permanent record of analyzed 

recession periods. 

Program initiation 

Once the above necessary input and output files are placed in the 

directory, the program is compiled, loaded, and executed. It initially asks for 

the name of the file to be read. The user enters the name of the gaging station 

of interest (without the z). The program reads the file and stores the data in 

four parallel one-dimensional arrays: (1) streamfiow, (2) years, (3) months, 

and (4) days of the month. The program then asks for the time period of 
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interest. The beginning and ending year is entered by a four-digit number for 

each. RECESS will also ask for the months of interest. The user specifies the 

number of months by entering a number from 1 to 12 and then designates each 

month by its corresponding number (e.g., 1 for January, 2 for February, and so 

on). Finally, the user is asked for the minimum length of recession periods 

required for detection. 

Obviously, recessions lasting only a few days do not represent the 

depletion of base flow. On the other hand, the longer the selected period, the 

smaller the number of detected recession segments. Therefore, a reasonable 

length of recession should be selected in order to have enough segments for 

analysis. In this research, recessions lasting at least 10 days since the last 

peak were chosen. In general, this selection depends on the characteristics of 

the flow system. In some aquifers the hydraulic conductivity is so low that it 

may take a considerable amount of time for the recession to become linear or 

near-linear—and hence to represent the base flow recession. For these cases 

the user may choose a larger nimiber for the days required to define a period 

that includes base flow recession. If the required length of recession period 

never occurs in a particular streamflow record, then that data cannot be used 

to generate a master recession curve. This was the case for some of the nine 

previously mentioned stations that were not analyzed. 

Zero streamflows 

When the user enters the name of the input file, if there is any zero daily 

streamflow included in this file, the program notifies the user demanding a 

value to be substituted for zero to make the log-transformation possible. A 

value of 0.0001 cfs (about 3 ml/sec) was used for this substitution. While 0.0001 
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cfs is not significantly different from zero, it would solve the problem of 

logarithm of zero values. 

Repetitive process 

Once the program receives all the above input from the user, it begins to 

search through the record to detect recession periods. The repeated steps are 

described below. 

Detection of periods A continuous period is located if (1) its length is 

greater than or equal to the number specified by the user (10 days in this 

research) and (2) within this period each pair of consecutive days fits the 

criterion that the streamflow on the second day is less than or equal to that of 

the first day. The detected period is then displayed with tabular and graphical 

options. The graphical option displays the points with the natural logarithm of 

streamflow on the horizontal axis and time (dates) on the vertical axis. The 

user views the graph and the tabular display to decide which part exhibits 

linearity. At this point, if the graph is not good enough to be used, the user can 

bypass the recession period entirely and advance to the next period. 

Selection of segments If the user decides to select part of the 

graphical display that is linear or near-linear, the segment must be specified 

by entering its first and last days. The selected segment should be long enough 

to define a reliable slope; a minimum of five days was chosen for this research. 

The first three days after a peak were considered as the time for cessation of 

overland flow and interflow. The segment ended with the last point of the 

detected recession period that was consistent with the other points in terms of 

linearity. For consistency, it has been recommended that an identical time 
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interval be selected for all segments. Since this suggestion would eliminate 

the possibility for many long linear recession segments to be fully included in 

the analysis, it was not followed. 

Calculation of slope After the segment to be analyzed is selected, 

the program performs a least square linear regression. The program 

assembles a set of paired data for time and log Q and calculates a best-fit 

regression equation using time as the dependent variable. The resulting 

equation, together with the coefficient of determination (E^) are displayed on 

the screen. is used to evaluate the goodness of fit for the straight line that 

represents the points. A perfect fit is characterized by E^ = 1. The absolute 

value of the slope of this equation (increment of time per increment of log Q), 

which is one of its coefficients, is equal to the storage delay factor (K) for the 

selected segments. 

For each selected recession period, the program retains K along with the 

mean of log Q as paired data for further analysis. After the repetitive steps 

described above are carried out for all detected recession periods in a data 

input file, the program jdelds a set of paired data with K in one coltunn and the 

corresponding mean log Q in another. This set can have up to 50 rows, 

corresponding to 50 recession segments. If this limit is reached or if the user 

chooses the "quit" option, the program stops searching. 

Derivation of the MEC's 

After the repeated steps are completed for all selected recession 

segments, the program sorts the resulting data pairs in descending order for 

log Q and displays a scatter plot of log Q versus K. The user can then eliminate 
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any existing outlier point which is inconsistent with the rest. The user can 

also evaluate the validity of the basic assumptions of a linear relation between 

K and log Q upon which the entire method is based. If this assumption does 

not hold, it may be decided to stop and not use the data set for further analysis. 

Otherwise, the program proceeds to determine the best-fit regression equation 

for K BiS a. linear function of log Q using least squares method (equation 2.17). 

Again the is calculated by the program to evaluate the goodness of fit. 

As was mentioned earlier by integration of equation (2.17), the program 

derives a second-order pol3niomial equation for time versus log Q (equation 

2.18). This equation is then transformed to a definite integral which represents 

a master recession curve, by assuming for time = zero, log Q = the maximmn 

observed value in all selected segments. Finally, the program writes the 

results to the four output files and stops. 

Multiple regression 

Multiple regression is a powerful method in applied statistics and is 

broadly used in hydrology to build predictive models. It has already been used 

in low flow studies, watershed modeling, and flood investigations. While it is 

potentially very useful, care must be taken to avoid its misuse in terms of 

underlying assiamptions and limitations. 

This procedure was used for Iowa streams to develop models for 

estimation of (1) the discharge which is expected to be equalled or exceeded 84% 

of the time (Q84%) and (2) seven-day, ten-year low flow (Qy^o)* as two different 

response variables. The former is known as regulated protected low flow, and 

the latter has been adopted by the state of Iowa as a basis for stream water 

quality calculations. 
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Model building 

In statistical modeling the aim is to investigate a functional relationship 

among pertinent variables to explain the variability in observed data. 

Selection of variables 

The following four variables were selected as potential explanatory 

variables for the model: 

jci = DA = drainage area (in square miles) 

X2 = EL = gaging elevation (in feet above National Geodetic Vertical Datxmi) 

^3 = Qm = mean annual streamflow (cfs) 

X4 = SDF = average median storage delay factor ^SDF = )med + (-^s )med j 

(liC^)med (^s)med median storage delay factors for winter and 

summer. 

Since annual precipitation was not recorded at all sites, mean annual 

streamflow, Qm, which is highly correlated with this parameter, was 

substituted in Table 3.1. Average median storage delay factor resulted from 

analysis of recessions in the first phase of this investigation. It serves as an 

indicator of the overall effect of basin geology. The dependent variables are yi = 

Q84% and3'2 = Qv.io-

Of course many other variables—some even quantifiable—potentially 

influence low flow in a particular area. However, the intent is to adhere to the 

principle of parsimony, which suggests describing the process with the least 

possible number of variables while maintaining reasonable accuracy. Table 

3.1 gives the variables used in the analysis for all stations. 
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Table 3.1. Variables used in multiregression models 

Independent variables Dependent variables 
Name DA EL Qm SDF Q84% lO

 

Si 511. 00 850. .00 327. .00 25.5 73.00 34.00 
S2 560. 00 829, .80 335, .00 27.5 74.00 29.00 
S3 770. 00 660 .00 577, .00 33.9 173.00 90.00 
S4 42. 80 850 .00 15, .90 21.8 2.90 1.50 
S5 224. 00 664 .65 140, .00 32.6 33.00 19.00 
S6 67500. 00 604 .84 35470, .00 38.9 14660.00 9020.00 
S7 177. 00 1034 .92 125 .00 25.5 24.00 9.00 
S8 892. 00 701 .61 487 .00 18.4 83.00 27.00 
S9 1545. 00 634 .46 953 .00 25.3 207.00 84.00 
SIO 130. 00 612 .03 84 .90 23.6 17.00 7.40 
Sll 305. 00 895 .06 208 .00 20.6 46.00 21.00 
S12 61. 30 728 .80 44 .90 33.8 7.00 2.80 
S13 516. 00 666 .19 367 .00 40.1 162.00 83.00 
S15 85600. 00 562 .68 47420 .00 36.8 21100.00 10100.00 
S16 95. 20 1130 .05 66 .90 19.3 8.40 4.00 
S17 1048. 00 882 .85 619 .00 18.6 69.00 18.00 
S18 2330. 00 598 .81 1547 .00 26.3 297.00 103.00 
S19 17. 80 576 .23 15 .30 20.4 2.60 0.40 
S20 122. 00 1180 .83 38 .20 21.4 1.95 0.30 
S21 133. 00 1179 .33 66 .00 18.1 5.20 0.80 
S22 429. 00 1143 .35 215 .00 20.3 23.00 6.10 
S23 1564. 00 853 .10 819 .00 19.8 99.00 22.00 
S24 118. 00 849 .44 74 .30 16.9 4.60 0.39 
S25 56. 10 788 .69 36 .30 18.3 2.20 0.21 
S26 201. 00 781 .58 133 .00 22.1 13.80 2.90 
S27 70. 90 786 .59 45 .00 13.8 2.20 0.00 
S28 2455. 00 749 .82 1156 .00 19.7 129.00 45.00 
S29 189. 00 744 .94 124 .00 26.3 8.00 0.56 
S30 2794. 00 720 .52 1825 .00 23.9 285.00 78.00 
S31 25. 30 673 .72 16 .20 13.5 0.30 0.00 
S32 98. 10 647 .48 66 .80 16.6 4.20 0.47 
S3 3 3271. 00 617 .27 1472 .00 23.8 218.00 60.00 
S3 4 3. 01 663 .27 1 .77 12.8 0.03 0.00 
S3 5 2. 94 678 .03 2 .44 13.0 0.12 0.00 
S3 6 201. 00 637 .49 107 .00 15.7 1.88 0.20 
S37 573. 00 633 .45 372 .00 17.0 18.60 2.50 
S3 8 4293. 00 588 .16 2993 .00 24.2 504.00 138.00 
S3 9 1054. 00 973 .02 713 .00 26.9 186.00 96.00 
S40 306. ,00 973 .35 176 .00 20.1 25.00 6.50 
S41 1661. ,00 868 .26 864 .00 20.3 191.00 73.00 
S42 846. .00 867 .54 509 .00 17.8 63.00 16.00 
S43 300. ,00 1176 .48 162 .00 17.4 23.00 3.50 
S44 526. ,00 1069 .59 262 .00 18.4 27.00 7.30 
S45 1330. ,00 961 .17 612 .00 18.5 83.00 30.00 
S46 1746. ,00 885 .34 980 .00 24.4 188.00 69.00 



www.manaraa.com

75 

Table 3.1. continued 

Independent variables Dependent variables 
Name DA EL Qm SDF Q84% Q7, 10 

S47 347. 00 882 .44 199. 00 33 .3 23.00 5. 00 
S48 303. 00 865 .03 172. 00 16 .5 21.00 3. 30 
S49 5146. 00 824 .14 3032. 00 23 .7 676.00 295. 00 
S50 13. 78 931 .26 8. 98 20 .4 0.65 0. 07 
S52 19. 51 905 .87 11. 90 19 .5 1.01 0. 00 
S53 6510. 00 700 .47 3476. 00 26 .6 821.00 353. 00 
S54 178. 00 737 .00 134. 00 20 .5 17.00 0. 44 
S55 7785. 00 581 .95 4749. 00 33 .5 1164.00 501. 00 
S56 12499. 00 538 .17 5947. 00 30 .7 1310.00 555. 00 
S57 315. 00 893 .61 163. 00 13 .8 4.52 0. 01 
S58 204. 00 881 .00 130. 00 17 .7 4.10 0. 00 
S59 556. 00 857 .10 301. 00 17 .3 2.88 0. 00 
S60 276. 00 810 .47 190. 00 20 .9 8.00 0. 79 
S61 1635. 00 685 .50 966. 00 28 .9 76.00 11. 00 
S62 730. 00 651 .53 448. 00 21 .1 28.20 2. 60 
S63 2890. 00 583 .00 1350. 00 23 .1 153.00 23. 00 
S64 530. 00 565 .07 376. 00 17 .2 21.00 2. 40 
S65 106. 00 630 .53 66. 20 14 .4 0.60 0. 00 
S66 4303. 00 521 .24 2455. 00 19 .3 230.00 33. 00 
S67 119000. 00 477 .41 62640. 00 43 .8 26160.00 12000. 00 
S69 2256. 00 1053 .54 951. 00 33 .9 93.00 26. 00 
S70 1308. 00 1038 .71 551. 00 18 .7 31.00 9. 50 
S71 257. 00 1079 .30 96. 30 15 .0 3.06 0. 11 
S72 4190. 00 969 .38 1595. 00 24 .3 131.00 38. 00 
S73 844. 00 989 .57 415. 00 13 .9 22.40 2. 30 
S74 5452. 00 894 .00 1986. 00 31 .7 174.00 41. 00 
S76 358. 00 806 .98 212. 00 18 .1 4.56 0. 00 
S77 6245. 00 773 .68 1984. 00 22 .2 183.00 45. 00 
S78 80. 00 1225 .12 42. 70 19 .5 0.95 0. 00 
S79 700. 00 1132 .33 364. 00 18 .2 21.00 1. 80 
S80 1619. 00 967 .09 745. 00 19 .9 55.00 9. 10 
S81 24. 00 1050 .90 10. 60 16 .6 0.02 0. 00 
S82 440. 00 991 .20 193. 00 28 .7 31.00 13. 00 
S83 994. 00 876 .43 468. 00 22 .9 67.00 26. 00 
S84 3441. 00 841 .16 1423. 00 21 .6 147.00 35. 00 
S85 78. 40 801 .04 62. 10 15 .6 4.20 0. 00 
S86 9879. 00 762 .52 4126. 00 33 .9 391.00 99. 00 
S87 92. 70 795 .87 75. 20 16 .1 3.38 0. 00 
S88 349. 00 788 .45 185. 00 12 ,1 4.26 0. 04 
S89 503. 00 776 .15 263. ,00 20 .1 12.00 1. 50 
S90 460. 00 769 .97 249. ,00 10 .4 4.60 0. 82 
S91 342. 00 759 .21 205. ,00 12 .9 4.20 0. 36 
S92 380. 00 734 .73 198. ,00 14 .0 2.20 0. 56 
S93 12479. 00 670 .91 4229. ,00 24 .7 500.00 122. 00 
S94 374. 00 682 .15 218. ,00 13 .1 4.10 0. 29 
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Table 3.1. continued 

Independent variables Dependent variables 
Name DA EL Qm SDF Q84% Q7, 10 

S95 13374. 00 622 .00 4766. 00 25 .0 564. 00 124. 00 
S96 14038. 00 547 .36 5159. 00 23 .3 621. 00 143. 00 
S97 105. 00 510 .20 70. 60 11 .7 0. 68 0. 00 
S98 87. 70 755 .57 49. 40 10 .2 0. 65 0. 04 
S99 161. 00 657 .98 97. 60 10 .2 2. 40 0. 00 
SlOO 788. 00 1331 .55 158. 00 23 .0 10. 80 1. 60 
SlOl 1592. 00 1222 .54 419. 00 14 .9 23. 40 1. 70 
S103 8424. 00 1118 .90 1039. 00 22 .7 88. 00 19. 00 
S104 314600. 00 1056 .98 29580. 00 39 .9 10540. 00 3870. 00 
S105 65. 10 1112 .04 17. 30 11 .7 1. 06 0. 04 
S106 268. 00 1269 .55 72. 40 13 .7 1. 94 0. 00 
S107 180. 00 1239 .40 46. 70 11 .1 0. 90 0. 00 
S108 886. 00 1092 .59 224. 00 24 .1 15. 80 2. 80 
S109 403. 00 1045 .82 141. 00 23 .5 21. 00 4. 00 
SllO 900. 00 1015 .00 515. 00 22 .7 48. 00 14. 00 
Sill 426. 00 1311 .66 251. 00 18 .3 29. 60 0. 00 
S112 1334. 00 1266 .84 380. 00 25 .9 29. 00 7. 10 
S113 1548. 00 1223 .60 731. 00 31 .5 69. 00 6. 40 
S114 2500. 00 1096 .49 831. 00 26 .7 76. 00 15. 00 
S115 2738. 00 1027 .02 780. 00 26 .5 84. 00 24. 00 
S116 39. 30 1258 .57 15. 70 21 .9 1. 98 0. 39 
S117 669. 00 1085 .86 269. 00 14 .7 37, 00 6. 90 
S118 3526. 00 1019 .85 1427. 00 15 .9 183. 00 47. 00 
S119 407. 00 1036 .53 135. 00 24 .8 20. 00 4. 30 
S120 871. 00 1009 .38 333. 00 23 .0 43. 00 6. 90 
S123 32. 00 1222 .56 16. 60 17 .6 0. 97 0. 01 
S124 30. 40 936 .96 11. 20 12 .2 1. 66 0. 00 
S126 609. 00 1085 .83 299. 00 21 .0 41. 00 8. 30 
S128 1326. 00 932 .99 595. 00 25 .9 104. 00 29. 00 
S129 26. 00 1261 .54 11. 10 13 .8 0. 56 0. 00 
S130 436. 00 1105 .83 226. 00 19 .2 27. 00 8. 60 
S131 894. 00 1005 .45 400. 00 28 .0 51. 00 15. 00 
S132 2806. 00 894 .17 1122. 00 19 .5 156. 00 30. 00 
S133 49. 30 1104 .67 29. 30 18 .4 1. 34 0. 00 
S134 762. 00 955 .36 355. 00 21 .2 25. 00 6. 10 
S135 217. 00 1095 .27 135. 00 14 .4 5. 00 0. 57 
S136 92. 10 1057 .51 54. 50 14 .6 0. 54 0. 00 
S137 52. 50 924 .70 31. 30 9 .7 0. 13 0. 00 
S138 701. 00 874 .04 380. 00 13 .3 14. 80 1. 70 
S139 104. 00 906 .26 70. 10 9 -9 0. ,96 0. 00 
S140 182. 00 917 .90 118. 00 8 .7 1. ,48 0. 00 
S141 168. 00 913 .70 116. ,00 8 .3 1. ,86 0. 09 
S142 549. 00 847 .92 308. ,00 9 .2 4. ,50 0. 22 
S143 708. 00 825 .68 336. ,00 11 .2 2. ,90 0. 29 
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Preliminary measures 

The data were initially inspected for inaccuracy (gross error and 

possible transcription error), consistency, and outlying data points. Four data 

points with unusually high numerical values for dependent variables (Q84% 

and Q7^IO), and for explanatory variables (DA and Qm) belonging to the stations 

S6 (Mississippi River at McGreger), S15 (Mississippi River at Clinton), S67 

(Mississippi River at Keokuk), and S104 (Missouri River at Sioux City) were 

initially flagged as outlying, influential, or leverage points. However, careful 

examinations in further steps proved that they are fairly consistent with the 

rest of the data and do not influence the fit. 

Type of the postulated models 

Scatter plots of yj = Q84% and ^2 = Qv.io versus each of four selected 

regressors were examined (not shown). It was determined that both $84% and 

^7,10 tend to change in a curved fashion with each individual variable. 

Therefore, usual linear models were not appropriate to establish a functional 

relationship among variables. Furthermore, attempts to investigate possible 

linear relationships between (and also QV^IQ) and the reciprocal, square 

root, and natural logarithm of the explaining variables failed. Even the In of 

response variables did not 3deld a possible linear relationship with any of the 

four regressors, suggesting that models such as y = 

are not applicable. However, scatter diagrams of In QM% (and In $7^10) against 

the In of all four explanatory variables, except EL, showed a trend of linearity. 

Figures 3.1 to 3.8 illustrate the tendency of data points to be linear in 

logarithmic plots. These plots suggest that the exponential models would be 

the best choice to define the variabilities. 



www.manaraa.com

78 

In Q84% 

10 + 

8 + 

_+ + + + +_ 

1 1 

1 1 
1 

11 3 
6 + 1 

I 11 1 
I 1 1 1 21 22 2 
1 1 1 11 
I 11 2113 12 1 

4 + 1 12 1 
1 111 1 1 

1 314 213 11 
1 11 1 11 1 

1 1 
2  +  1 1 1 1  

1 1 12 2 4111 
1 1 1 1 11 
I 1111 1111 1 1 
I  1 1 1  

0 + 1 1 11 1 1 
1 1  1 2  

1 
1 

- 2 + 1  1  

-4 + 

1 2 3 4 5 6 7 8 9 10 11 12 13 

In DA 

Figure 3.1. Scatter plot of In Q84% versus In DA. 
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Figure 3.2. Scatter plot of In Q84% versus In EL. 
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Figure 3.6. Scatter plot of In Qy^io versus In EL. 
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General models Based upon the appearance of scatter plots 

shown in Figure 3.1 to 3.8, an exponential model was hypothesized with all 

four explanatory variables for both response variables Q84% and as 

follows: 

(Qmh = Po-(DA)f' (Ehi' (SDF)?' (3.1) 

(e7,io)i =Po -(BAjfi (.EDf .{Qjf (SDDf' e; (3.2) 

where e^'s (and e/'s) are random error terms. In these models, terms are 

multiplied instead of added together, and even the error terms and e- are 

multiplicative. The models can be converted into an additive linear form by 

log-transformation to represent linear regression planes. 

In order for the least square method to be applicable, the In of random 

error terms should be independent and normally distributed with constant 

variance and zero expectation. This implies that random error terms should 

have Log-normal distribution. 

To examine whether other types of nonlinear models would fit the data, 

two more nonlinear additive models were fitted to the data for both ^84% and 

Q710'. (1) a second order polynomial model with four second order terms and (2) 

the same model with all possible interaction terms (cross products). However, 

the plot of residuals of both models and their unrealistic prediction of negative 

streamflow suggested their inadequacy. Therefore, they were discarded. 

Restricted models Given the fact that the primary objective for low 

flow modeling is to develop a methodology for estimation of low flow indices at 

ungaged sites, the constraint is to select those explanatory variables which are 

known without any previous records. Two variables that have this 
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qualification are drainage area (DA) and datum elevation (EL). The next step, 

therefore, is to develop models to estimate Q84% and based only upon DA 

and EL for quick reference, although they may be less accurate. For each 

response variable, two exponential models were again developed; one includes 

only DA as the independent variable and the other uses both DA and EL. 

For Q84%' (Q84%)i = Po • iDA)f^ • (3.3) 

(Q84%)i =Po<DA)f^-Ei (3.4) 

For Q7^io: (Q7,io)j = Po' (•Q^)f^ • (3.5) 

(Q7,iQ)i =Po-(DA)^^.iELt Si (3.6) 

Subset selection procedures 

With four potential explanatory variables, 2^ different combinations are 

possible, and 16 possible regression models should therefore be checked to 

choose the most statistically reliable one. There are a set of procedures that 

help screen the variables, select the most important ones to be included in the 

final regression models, and determine the ranking order of their 

significance. These procedures are classified into two categories, namely 

forward selection and backward elimination. Another method for selecting 

the most relevant variables—called stepwise procedure—combines properties 

from both of the above procedures. 

Forward selection (FS) procedure begins with an equation with no 

variable (only an intercept). Then the variable with the highest R is included 

in the model, and its regression coefficient is tested to see if it is different from 
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zero with a specified significance level for entry (slentry = 0.05 was assiimed). 

The variable is retained in the equation if it is significantly non-zero, and a 

search for the second candidate is conducted in the same manner. Once a 

variable is included, it will not be removed. When the regression coefficient for 

the variable entering the model is not significant or when all variables have 

been included in the model, the procediire is terminated. 

In backward elimination (BE), a significant level for stay is specified 

(slstay = 0.10 was assumed). The procedure begins as a first step to compute a 

model with all variables included and then drops one variable at a time. The 

first candidate is the one with the lowest F-value—^that is, the one whose F is 

smaller than slstay. The process stops when no more variables can be 

removed according to the above criterion. Since BE starts with calculation of 

the full model, it is sometimes preferable to the FS algorithm. 

Stepwise procedure, a combination of both FS and BE, is a more 

commonly used method for screening the variables. Its starting point is 

similar to the FS, but every time a new variable enters the model, a stepdown 

iteration is performed to examine the possibility of removing the variables 

already included. This is the main difference between the two algorithms. For 

the stepwise method, a value must initially be specified for both slentry and 

slstay. Selection of different values for these two parameters can change the 

final structure of the model. For this study, slentry = 0.05 and slstay = 0.10 

were specified, but equal values can also be chosen for both. 

Residual plots 

Residuals, the differences between observed and predicted values, 

represent the point estimates for random error terms resulting from random 
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fluctuation of actual points about the multiregression surface. They are 

assumed to be mutually independent and normally distributed with constant 

variance and zero mean. The assumption of normality can be verified by 

providing a normal probability plot. The residuals are usually plotted as the 

ordinate versus values of explanatory variables (j:,'s) and/or the predicted 

values (5^^'s). Both types of plots were employed in this research. They are 

expected to display no systematic pattern and to be uniformly distributed on 

both sides of the zero line. If the form of the postulated model is not correctly 

selected, the residuals would exhibit a special pattern. The pattern can 

further be used to determine a more satisfactory model. 

It is common to transform the ordinary residuals to a scale-free 

standardized set, called Student residuals, by dividing each one by its 

estimated standard error according to the relationship 

(3.7) 

where = hat matrix (or leverage value). The standardized residuals have a 

constant standard deviation of one and zero mean. This standardization 

makes it more convenient to determine the deviation of the residuals from 

their mean of zero, since the ordinate is simply scaled by the number of 

standard deviations from the mean. Also, the residual plots are more visually 

informative. 

Useful information can be extracted from residual plots regarding (1) 

residual assumptions (Independence, constant variance, and normal 

distribution), (2) detection of outliers and unusual points, (3) detection of 

heteroscedasticity, and (4) inadequacy of the model. 
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Diagnostic measures 

Diagnostic measures are the result of considerable advances in the area 

of regression theory during the past two decades. In fitting a model, these 

measures help investigators to make necessary corrections and modifications 

before or even after arriving at the actual form of the final model. Some 

diagnostic measures utilized in this investigation are briefly mentioned below. 

Checking for unusual data points In the early phase of the analysis, 

diagnostic plots were provided to detect the presence of possible outlier, 

influential, and leverage data points. These t3rpes of points can potentially 

distort the results of analysis, 

A point was regarded as an outlier if it was inconsistent with the rest of 

the points and/or its residual was relatively large. An influential point is one 

whose inclusion in the analysis causes a substantial change in the fitted model 

in terms of regression coefficients. Among the many quantitative measures of 

influence that have been proposed, the following three were used to detect 

influential points in this research: (1) Cook's Distance, (2) DFFIT, and (3) R 

student. 

In particular, Cook's D, which combines hat matrix and Student 

residuals, is a widely used measure of influential points given by 

= (3.8) 
1-^i P 

High leverage points are isolated points which singly dictate the model 

equation. If a high leverage point is removed, an entirely different regression 

line would result. A measure of leverage available in SAS is hat matrix, with 

a suggested cutoff point of 0.60. In this investigation no cutoff point was 
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considered for any of the diagnostic measures. Instead, the relative high-

value points were considered within the context of the entire data. 

In addition to the above diagnostic tools, the residual plots of a model are 

also very useful in detecting unusual points and were consulted frequently. 

Checking for multicollinearily Multicollinearity refers to the 

existence of strong linear relationships among the explanatory variables. The 

absolute lack of multicollinearity—called orthogonality—is desirable, but in 

practice it is impossible to select several orthogonal explanatory variables. In 

fact, slight correlation among explanatory variables is not serious enough to 

affect the model. However, if the variables are strongly interrelated, the 

problem of multicollinearity would arise. Multicollinearity causes instability 

in the estimated regression coefficients (j8's) and increases standard error of 

estimate. It also affects the interpretation of the multiregression equation. 

A measure of multicollinearity for each explanatory variable called 

variance inflation factor is available in SAS and can be calculated by the 

following equation 

= (3.9) 
l - K i  

where is the multiple coefficient of determination that results when is 

regressed against all the other explanatory variables. When Xi is collinear, 

is high; therefore, VIF would be large. If the variables are orthogonal, 1^ = 0 

and VIF would have its minimum value of one. The deviation of VIF from one 

indicates a tendency toward collinearity. The problem of multicollinearity 

becomes serious when VIF approaches two-digit numbers. Multicollinearity 

is usually checked after the model has been specified. 
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Evaluating alternate models 

The end product of a comprehensive regression analysis is a set of fitted 

models. Each model has a different number and combination of explanatory 

variables and needs to be checked in terms of merits and weaknesses. In the 

past, there were two measures available for comparison and judgement of the 

models, namely and standard error of estimate s. However, using a single 

statistic does not ensure the goodness of fit and several other criteria must be 

consulted as well. The following are criteria that have concurrently been used 

in this investigation. 

Adjusted 

This value refers to a multiple coefficient of determination that has been 

corrected according to the following equation for the effect of adding more 

regressors. 

ADJRSQ = R^ = 1-("'~1)(1~^^) (3.10) 
n — k 

2 The higher R is desirable. 

ANOVA F value 

This statistic is a measure of global usefulness of the model. It is used to 

reject the null hypothesis (Hq: all P's = 0). The higher the F, the more useful 

the model. 

Standard error of estimate 

This is a criterion directly related to the confidence interval for 

prediction. Since a shorter prediction interval is more desirable, a smaller 

standard error is always preferred. 
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Mallows Cp 

Cp is a measure of total squared error defined as 

SSE„ 

where SSEp = the error sum of squares for a model with p parameters, 

including the intercept 

MSE = mean square errors for the full model 

n = number of observations 

p = number of parameters 

In order for a model to be unbiased, Cp must not only be small but also 

as close to the p as possible. 

The PRESS statistic 

PRESS denotes the predicted residual sum of squares of the model, 

which results from dropping the ith observation (one per time) and estimating 

the parameters of the model without this point. If the residual for the ith point 

from this model and from the full model are and respectively, 

then di=yi-S(i-) 

e i = y i - y i  

It can be proven that di is related to according to 

where hn = the leverage value, which is between zero and one. 

The PRESS is then defined as 
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= (3.12) 
i-1 i=l l-«ii 

PRESS is larger than the usual residual sum of squares, and the model with 

the smallest difference is always selected. 

Model validation 

After analysis of residuals and plotting of observed versus predicted 

values for the response variable prove the adequacy of the model, it must be 

validated. Validation of a selected model is the final step in the model btiilding 

process. It involves checking the predictive ability and stability of the model 

using possibly a different data set; a new data set may be collected for this 

purpose. A reasonable alternative is to split the existing data into two subsets, 

excluding one subset from the analysis. The hold-out subset is then regarded 

as an independent new set and used for model validation. This procedure is 

more practical and often called cross validation. In the present research, data 

fi-om 13 streams (10% of the total) were initially removed at random from the 

regression analysis and later used to check the predictive ability of the models. 

These data belonged to stations S2, S12, S24, S28, S35, S47, S52, S58, S78, S97, 

S106, S129, and S133. 

Program REGRESS 

Several small programs in the Statistical Analysis System (SAS) 

language were written to handle different parts of the multiregression 

analysis. A comprehensive program called REGRESS, which is a combination 

of these subprograms, is listed in Appendix C. 
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This chapter ends with two general remarks regarding regression 

models. Even if all statistical assumptions hold true, there are certain 

restrictions still remaining to be considered. 

1. The developed models are more appropriate to be used within the range 

of explanatory variables upon which they are based. Extrapolation of the 

models would lead to erroneous results and is not recommended. 

2. It is assumed that the combined causal factors responsible for an 

existing situation will continue to operate with the same pattern in the 

future as they did in the past—an assumption that can neither be 

justified nor rejected. 
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CHAPTER 4. RESULTS AND DISCUSSION 

In this chapter, the results of the research are presented first, followed 

by a general discussion. 

Results 

The application of the methods described in the preceding chapter has 

yielded the following results which are discussed in the same order as in 

Chapter 3. 

Master Recession Curves (MRC's) 

Using the program RECESS for each gaging station, two master 

recession curves have been developed, each based on half of the records. One 

MRC, denoted "for winter," evolved from the records of October through 

March. The other covers the April-to-September data and is designated "for 

summer." For each gaging station, both MRC's appear on one page for the 

sake of comparison. Altogether, 134 pairs of MRC's have been developed. Both 

MRC's and their equations are presented in Appendix B. 

Comparison of winter and summer MRC's 

By common sense, it is expected that winter MRC's recede over a longer 

period of time with a gentler slope compared to the summer MRC's on account 

of relatively negligible evaporation and transpiration from shallow aquifers 

during the winter. This is a reasonable expectation, and it of course holds true 

for some of the stations. Considering S33, Iowa River at Iowa City, as an 

example, it takes about 15 days for streamflow to recede from 3000 to 1000 cfs 

during winter time (Figure 32.1 in Appendix B); whereas in the summer 
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period, recession of the same range takes place within 12 days (Figure 32.2 in 

Appendix B). However, there are stations, such as S66, Skunk River at 

Augusta (Figures 64.1 and 64.2 in Appendix B), in which no significant 

difference between the slopes of winter and summer MRC's can be seen. This 

may be attributed to the tendency for lower hydraulic conductivity in winter 

time, which would compensate for the summer evapotranspiration. If the base 

flow emanates from a confined aquifer, this inference is not valid because 

deeper aquifers are not affected by surface evaporation or low temperattires. In 

Table 4.1, there are 71 stations where iTw > and 63 stations with < K^. 

Application of the MRC's 

The curves can be used to predict the general behavior of streams during 

a dry period. For the purpose of clarification, an example is given below: 

Suppose that in station S66 (Skunk River at Augusta) during the winter 

period, and a few days after the peak, the flow rate is 4000 cfs; and the 

streamflow 10 days later needs to be estimated. Using the equation of the MRC 

in this station T = 8.727 (log Q)2 - 80.20 (log Q) + 180.2 

Step 1. Find the corresponding time value for the initial streamflow. 

^initial = 8.727 (log 4000)2 - 80.20 Gog 4000) + 180.2 = 4.546 days 

Step 2. Add ten days to the initial time value. 

Tfinfli = Tinitiai + 10 = 4.546 + 10 = 14.55 days 

Step 3. Plug the value of ITfinal into the MRC equation and solve for Q. 

14.55 = 8.727 (log Qfinai)^ - 80.20 (log Qgnai) + 180.2 

log Qfinai = 3.135 and 6.055 Qfinai = 1365 and 1135011 cfs 

Mathematically, the MRC equation represents a parabola; thus, it 
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always jdelds two values for Q. The smaller one, corresponding to the lower 

limb of the hydrograph, should be selected. Therefore, Qfinai = 1365 cfs is the 

answer. 

The same procedure can be used graphically to estimate the streamflow 

using the MRC of S66, illustrated in (Figure 64.1 in Appendix B). 

Reliability of the MRC's 

To examine the reliability and applicability of the MRC's in real 

situations, the master recession curves for five stations have been randomly 

selected and some actual recession segments from these stations plotted on 

their MRC's in Figures 4.1 to 4.5. These recession segments are represented 

by squares, together with full lines depicting the master recession curves 

which have been developed for each station. The initial time for each segment 

has been adjusted as was shown in the previous example. 

Storage delav factors 

As a second output of the program RECESS, numerical values were 

obtained for minimum, median, and maximum storage delay factors, which 

are defined as the time required for the hydrograph to recede by one log cycle. 

Only the median storage delay factors were listed. The selection of the median 

(instead of the mean) stems from the fact that the median is less sensitive to 

the elimination or inclusion of extreme values. Table 4.1, columns 2 to 4, 

shows the median storage delay factors for the months of October through 

March (K^)med> April through September (/!rg)ined, and the average values of 

the two quantities for each stream (SDF). As the Table shows, the calculated 

SDF's range from 8.3 (for S141) to 43.8 (for S67) days/log cycle . 
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Figure 4.1. Some actual recession segments in station 82 plotted with squares on its MRC 
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Figure 4.2. Some actual recession segments in station S12 plotted with squares on its MRC 
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Table 4.1. Calculated parameters relevant to low flow of stream gaging stations in Iowa 

Median s torage 
delay factor  

ID for  winter ,  T/{a2"S)® Low f low indices  (csm) 
stmuner & mean 

(days)  (day"l)  

Kw KS SDF 0.933/SDF Qiti/A Q99%/A Q90%/A Q84%/A Q7,2/A Q7,5/A Q7,10/A Q7,20/A 

SI 26 .5  24.  5  25 .5  0 .  037 0  .640 0 .067 0  .119 0  .143 0  .119 0  .082 0  .067 0 .  057 
S2 28 .1  26.  9  27 .5  0 .  034 0  .598 0 .055 0  .113 0 .132 0  .109 0  .070 0  .052 0 .  041 
S3 33 .0  34.  8  33 .9  0 .  028 0  .749 0  .126 0  .190 0  .225 0  .188 0  .136 0  .117 0 .  104 
S4 24 .1  19.  5  21 .8  0 .  043 0  .372 0 .035 0  .056 0  .068 0  .068 0  .044 0  .035 0 .  030 
S5 38 .0  27.  2  32 .6  0 .  029 0  .625 0  .089 0  .125 0 .147 0  .125 0  .098 0  .085 0 .  076 
S6 38 .1  39.  6  38 .9  0 .  024 0  .525 0 .135 0  .193 0 .217 0  .191 0  .151 0  .134 0 .  121 
S7 25 .6  25.  4  25 .5  0 .  037 0  .706 0 .047 0  .107 0  .136 0  .119 0  .068 0  .051 0 .  038 
S8 18 .  6  18.  1  18 .4  0 .  051 0  .546 0  .038 0  .076 0 .093 0  .053 0  .036 0  .030 0 .  027 
S9 26 .2  24.  4  25 .3  0 .  037 0  .617 0  .055 0  .106 0 .134 0  .113 0  .070 0  .054 0 .  043 
SIO 24 .0  23.  2  23 .6  0 .  040 0  .653 0  .062 0  .108 0  .131 0  .108 0  .070 0  .057 0 .  048 
S l l  19 .8  21.  3  20 .6  0 .  046 0  .682 0 .075 0  .128 0 .151 0  .134 0  .089 0  .069 0 .  056 
S12 38 .2  29.  3  33 .8  0 .  028 0  .732 0  .039 0  .088 0 .114 0  .098 0  .059 0  .046 0 .  036 
S13 41 .2  39.  0  40 .1  0 .  023 0  .711 0  .174 0  .281 0 .314 0  .260 0  .192 0  .161 0 .  136 
S15 36 .5  37.  1  36 .8  0 .  025 0  .554 0  .145 0  .220 0  .246 0  .181 0  .137 0  .118 0 .  104 
S16 19 .6  18.  9  19 .3  0 .  049 0  .703 0  .034 0  .075 0  .088 0  .075 0  .051 0  .042 0 .  035 
S17 18 .5  18.  6  18 .6  0 .  050 0  .591 0  .009 0  .047 0  .066 0  .052 0  .025 0  .017 0 .  Oi l  
S18 28 .3  24.  3  26 .3  0 .  035 0  .664 0  .045 0  .097 0  .127 0  .103 0  .060 0  .044 0 .  034 
S19 21 .9  18.  9  20 .4  0 .  046 0  .860 0  .019 0  .101 0  .146 0  .073 0  .036 0  .022 0 .  015 
S20 22 .5  20.  3  21 .4  0 .  044 0  .313 0 .003 0  .011 0  .016 0  .010 0  .004 0  .002 0 .  002 
S21 21 .1  15.  1  18 .1  0 .  052 0  .496 0 .007 0  .029 0  .039 0  .027 0  .011 0  .006 0 .  004 
S22 20 .0  20.  5  20 .3  0 .  046 0  .501 0  .014 0  .042 0  .054 0  .040 0  .021 0  .014 0 .  Oi l  
S23 18 .3  21.  2  19 .8  0 .  047 0  .524 0  .017 0  .047 0  .063 0  .047 0  .022 0  .014 0 .  010 
S24 11 .1  22.  7  16 .9  0 .  055 0  .630 0  .003 0  .024 0  .039 0  .036 0  .008 0  .003 0 .  000 
S25 18 .4  18.  1  18 .3  0 .  051 0  .647 0  .004 0  .020 0  .039 0  .032 0  .009 0  .004 0 .  002 
S26 20 .6  23.  5  22 .1  0 .  042 0  .662 0  .016 0  .044 0  .069 0  .050 0  .022 0  .014 0 .  009 
S27 10 .1  17.  4  13 .8  0 .  068 0  .635 0  .000 0  .014 0  .031 0  .024 0  .003 0  .000 0 .  000 
S28 19 .8  19.  6  19 .7  0 .  047 0  .471 0 .016 0  .037 0  .053 0  .044 0  .025 0  .018 0 .  015 
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Table 4.1 continued 

Median s torage 
delay factor  

ID for  winter ,  T/(a2-S)  Low f low indices  (csm) 
stammer & mean 

(days)  (day~l)  

Kw Ks SDF 0.933/SDF Qm/A Q99%/A Q90%/A Q84%/A Q7,2/A Q7,5/A Q7,10/A Q7,20/A 

S29 25 .7  26 .8  26 .3  0 .  036 0  .656 0 .  002 0  .025 0  .042 0  .033 0 .  ,008 0 .  ,003 0 .  ,000 
S30 23 .4  24 .3  23 .9  0 .  039 0  .653 0 .  026 0  .075 0  .102 0  .085 0 .  ,042 0 .  ,028 0 .  ,019 
S31 11 .7  15 .2  13 .5  0 .  070 0  .640 0 .  000 0  .004 0  .012 0  .005 0 .  ,000 0 .  ,000 0 .  ,000 
S32 19 .4  13 .7  16 .6  0 .  057 0  .681 0 .  004 0  .025 0  .043 0  .035 0 .  ,010 0 .  ,005 0 .  002 
S33 23 .8  23 .8  23 .8  0 .  039 0  .450 0 .  019 0  .048 0  .067 0  .047 0 .  ,025 0 .  ,018 0 .  014 
S34 12 .4  13 .2  12 .8  0 .  073 0  .588 0 .  000 0  .003 0  .010 0  .000 0 .  ,000 0 .  ,000 0 .  000 
S3 5  13 .0  12 .9  13 .0  0 .  072 0  .830 0 .  000 0  .010 0  .041 0  .000 0 .  000 0 .  000 0 .  000 
S3 6  12 .7  18 .6  15 .7  0 .  060 0  .532 0 .  001 0  .005 0  .009 0  .009 0 .  002 0 .  001 0 .  001 
S37 18 .6  15 .3  17 .0  0 .  055 0  .649 0 .  004 0  .019 0  .032 0  .019 0 .  007 0 .  004 0 .  003 
S38 24 .8  23 .6  24 .2  0 .  039 0  .697 0 .  037 0  .082 0  .117 0  .079 0 .  044 0 .  032 0 .  025 
S3 9  24 .8  29 .0  26 .9  0 .  035 0  .676 0 .  093 0  .152 0  .176 0  .155 0 .  111 0 .  091 0 .  077 
S40 21 .4  18 .7  20 .1  0 .  047 0  .575 0 ,  019 0  .062 0  .082 0  .065 0 .  032 0 .  021 0 .  015 
S41 20 .1  20 .5  20 .3  0 .  046 0  .520 0 .  047 0  .095 0  .115 0  .092 0 .  057 0 .  044 0 .  036 
S42 17 .4  18 .2  17 .8  0 .  052 0  .602 0 .  015 0  .053 0  .074 0  .061 0 .  028 0 .  019 0 .  013 
S43 15 .9  18 .8  17 .4  0 .  054 0  .540 0 .  Oi l  0  .060 0  .077 0  .067 0 .  027 0 ,  012 0 .  004 
S44 19 .2  17 .5  18 .4  0 .  051 0  .498 0 .  013 0  .038 0  .051 0  .040 0 .  021 0 .  014 0 .  010 
845 17 .5  19 .4  18 .5  0 .  051 0  .460 0 .  019 0  .050 0  .062 0  .047 0 .  029 0 .  023 0 .  018 
S46 24 .3  24 .4  24 .4  0 .  038 0  .561 0 .  039 0  .087 0  .108 0  .096 0 .  054 0 .  040 0 .  030 
S47 37 .0  29 .5  33 .3  0 .  028 0  .573 0 .  014 0  .049 0  .066 0  .052 0 .  022 0 .  014 0 .  010 
S48 12 .4  20 .  6  16 .5  0 .  057 0  .568 0 .  013 0  .053 0 .069 0  .059 0 .  022 0 .  Oi l  0 .  006 
S49 21 .9  25 .5  23 .7  0 .  039 0  .589 0 .  055 0  .107 0  .131 0  .113 0 .  073 0 .  057 0 .  047 
S50 19 .8  21 .0  20 .4  0 .  046 0  .652 0 .  001 0  .031 0  .047 0  .031 0 .  012 0 .  005 0 .  000 
S52 13 .2  25 .8  19 .5  0 .  048 0  .610 0 .  001 0  .034 0  .052 0  .033 0 .  Oi l  0 .  000 0 .  000 
S53 24 .7  28 .5  26 .6  0 .  035 0  .534 0 .  053 0  .102 0  .126 0  .102 0 .  067 0 .  054 0 .  046 
S54 20 .0  20 .9  20 .5  0 .  046 0  .753 0 .  003 0  .056 0  .096 0  .073 0 .  Oi l  0 .  002 0 .  001 
S55 30 .7  36 .3  33 .5  0 .  028 0  .610 0 .  057 0  .117 0  .150 0  .130 0 .  083 0 .  064 0 .  052 
S56 26 .5  34 .8  30 .7  0 .  030 0  .476 0 .  046 0  .085 0  .105 0  .079 0 .  054 0 .  044 0 .  038 
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Table 4.1 continued 

Median s torage 
delay factor  

ID for  winter ,  T/(a2'S)  Low f low indices  (csm) 
summer & mean 

(days)  (day~l)  

Kw KS SDF 0.933/SDF Qm/A Q99%/A Q90%/A Q84%/A Q7,2/A Q7,5/A Q7,10/A Q7,20/A 

S57 13 .9  13 .7  13 .8  0 .  068 0  .517 0 .  000 0 .  007 0 .  014 0 .  008 0 .  ,001 0 .  000 0 .  000 
S58 21 .2  14 .1  17 .7  0 .  053 0  .637 0 .  000 0 .  007 0 .  020 0 .  010 0 .  001 0 .  000 0 .  000 
S59 18 .7  15 .9  17 .3  0 .  054 0  .541 0 .  000 0 .  001 0 .  005 0 .  003 0 .  000 0 .  000 0 .  000 
S60 21 .5  20 .3  20 .9  0 .  045 0  .688 0 .  003 0 .  018 0 .  029 0 .  022 0 .  006 0 .  003 0 .  001 
S61 30 .1  27 .7  28 .9  0 .  032 0  .591 0 .  005 0 .  032 0 .  046 0 .  041 0 .  013 0 .  007 0 .  004 
S62 21 .2  20 .9  21 .1  0 .  044 0  .614 0 .  003 0 .  023 0 .  039 0 .  033 0 .  009 0 .  004 0 .  002 
S63 21 .2  25 .0  23 .1  0 .  040 0  .467 0 .  008 0 .  036 0 .  053 0 .  032 0 .  013 0 .  008 0 .  005 
S64 17 .0  17 .4  17 .2  0 .  054 0  .709 0 .  004 0 .  023 0 .  040 0 .  012 0 .  006 0 .  005 0 .  004 
S65 15 .4  13 .3  14 .4  0 .  065 0  .625 0 .  000 0 .  001 0 .  006 0 .  000 0 .  000 0 .  000 0 .  000 
S66 19 .0  19 .6  19 .3  0 .  048 0  .571 0 .  007 0 .  033 0 .  053 0 .  035 0 .  013 0 .  008 0 .  005 
S67 39 .4  48 .2  43 .8  0 .  021 0  .526 0 .  122 0 .  193 0 .  220 0 .  164 0 .  119 0 .  101 0 .  087 
S69 38 .5  29 .2  33 .9  0 .  028 0  .422 0 .  009 0 .  030 0 .  041 0 .  035 0 .  017 0 .  012 0 .  008 
S70 18 .3  19 .1  18 .7  0 .  050 0  .421 0 .  007 0 .  018 0 .  024 0 .  020 0 .  Oi l  0 .  007 0 .  005 
S71 13 .6  16 .3  15 .0  0 .  063 0  .375 0 .  000 0 .  006 0 .  012 0 .  005 0 .  001 0 .  000 0 .  000 
S72 28 .7  19 .8  24 .3  0 .  039 0  .381 0 .  008 0 .  023 0 .  031 0 .  025 0 .  013 0 .  009 0 .  007 
S73 15 .0  12 .7  13 .9  0 .  068 0  .492 0 .  005 0 .  018 0 .  027 0 .  026 0 .  008 0 .  003 0 .  001 
S74 34 .4  29 .0  31 .7  0 .  029 0  .364 0 .  008 0 .  023 0 .  032 0 .  022 0 .  Oi l  0 .  008 0 .  006 
S76 22 .2  14 .0  18 .1  0 .  052 0  .592 0 .  000 0 ,  005 0 .  013 0 .  006 0 .  001 0 .  000 0 .  000 
S77 23 .7  20 .6  22 .2  0 .  042 0  .318 0 .  008 0 .  021 0 .  029 0 .  018 0 .  010 0 .  007 0 .  006 
S78 23 .0  16 .0  19 .5  0 .  048 0  .534 0 .  000 0 .  006 0 .  012 0 .  009 0 .  000 0 .  000 0 .  000 
S79 21 .2  15 .2  18 .2  0 .  051 0  .520 0 .  004 0 .  020 0 .  030 0 .  043 0 .  010 0 .  003 0 .  001 
S80 15 .8  23 .9  19 .9  0 .  047 0  .460 0 .  007 0 .  024 0 .  034 0 .  030 0 .  Oi l  0 .  006 0 .  003 
S81 19 .9  13 .2  16 .6  0 .  057 0  .442 0 .  000 0 .  000 0 .  001 0 ,  000 0 .  000 0 .  000 0 .  000 
S82 36 .7  20 .7  28 .7  0 .  033 0  .439 0 .  039 0 .  059 0 .  070 0 .  048 0 .  034 0 .  030 0 .  027 
S83 24 .0  21 .7  22 .9  0 .  041 0  .471 0 .  030 0 .  055 0 .  067 0 .  051 0 .  032 0 .  026 0 .  023 
S84 22 .3  20 .9  21 .6  0 .  043 0  .414 0 .  Oi l  0 .  031 0 .  043 0 .  030 0 .  015 0 .  010 0 .  008 
S85 14 .0  17 .2  15 .6  0 .  060 0  .792 0 .  000 0 .  026 0 .  054 0 .  031 0 .  006 0 .  000 0 .  000 
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Table 4.1 continued 

Median s torage 
delay factor  

ID for  winter ,  T / { a ^ - S )  Low f low indices  (csm) 
Slammer & mean 

(days)  (day~l)  

Kw Ks SDF 0.933/SDF Qm/A Q99%/A Q90%/A Q84%/A Q7,2/A Q7,5/A Q7,10/A Q7,20/A 

S86 35 .8  31 .9  33 .9  0 .  028 0  .418 0 .  010 0 .  029 0  .040 0 .  028 0 .  014 0 .  010 0 .  008 
S87 17 .6  14 .5  16 .1  0 .  058 0  .811 0 .  000 0 .  023 0  .036 0 .  025 0 .  008 0 ,  000 0 .  000 
S88 12 .7  11 .4  12 .1  0 .  078 0  .530 0 .  000 0 .  005 0  .012 0 .  006 0 .  001 0 ,  000 0 .  000 
S89 21 .6  18 .5  20 .1  0 .  047 0  .523 0 .  003 0 .  015 0  .024 0 .  017 0 .  006 0 ,  003 0 .  002 
S90 9  .8  11 .0  10 .4  0 .  090 0  .541 0 .  002 0 .  007 0  .010 0 .  007 0 .  003 0 .  002 0 .  001 
S91 13 .0  12 .7  12 .9  0 .  073 0  .599 0 .  002 0 .  007 0  .012 0 .  006 0 .  002 0 .  001 0 .  001 
S92 13 .4  14 .6  14 .0  0 .  067 0  .521 0 .  001 0 .  004 0  .006 0 .  004 0 .  002 0 .  001 0 .  001 
S93 26 .9  22 .4  24 .7  0 .  038 0  .339 0 .  Oil 0.  029 0  .040 0 .  027 0 .  014 0 .  010 0 .  007 
S94 13 .9  12 .2  13 .1  0 .  072 0  .583 0 .  000 0 .  006 0  • Oil 0.  006 0 .  002 0 .  001 0 .  000 
S95 24 .7  25 .2  25 .0  0 .  037 0  .356 0 .  008 0 .  030 0  .042 0 .  028 0 .  014 0 .  009 0 .  007 
S96 21 .0  25 .6  23 .3  0 .  040 0  .368 0 .  010 0 .  032 0  .044 0 .  029 0 .  015 0 .  010 0 .  007 
S97 11 .6  11 .8  11 .7  0 .  080 0  .672 0 .  000 0 .  000 0  .006 0 .  000 0 .  000 0 .  000 0 .  000 
S98 10 .8  9  .6  10 .2  0 .  091 0  .563 0 .  001 0 .  005 0  .007 0 .  003 0 .  001 0 .  000 0 .  000 
S99 11 .3  9  .1  10 .2  0 .  091 0  .606 0 .  003 0 .  009 0  .015 0 .  004 0 .  002 0 .  000 0 .  000 
SlOO 24 .6  21 .4  23 .0  0 .  041 0  .201 0 .  003 0 .  009 0  .014 0 .  007 0 .  003 0 .  002 0 .  001 
SlOl 11 .0  18 .8  14 .9  0 .  063 0  .263 0 .  001 0 .  009 0  .015 0 .  009 0 .  003 0 .  001 0 .  000 
S103 17 .1  28 .2  22 .7  0 .  041 0  .150 0 .  004 0 .  010 0  .013 0 .  009 0 .  004 0 .  003 0 .  002 
S104 38 .5  41 .2  39 .9  0 .  023 0  .094 0 .  016 0 .  028 0  .034 0 .  020 0 .  014 0 .  012 0 .  oil 
S105 12 .9  10 .4  11 .7  0 .  080 0  .266 0 .  002 0 .  Oil 0 .016 0 .  Oil 0.  002 0 .  001 0 .  000 
S106 15 .7  11 .6  13 .7  0 .  069 0  .270 0 .  000 0 .  004 0  .007 0 .  004 0 .  000 0 .  000 0 .  000 
S107 10 .9  11 .3  11 .1  0 .  084 0  .259 0 .  000 0 .  002 0  .005 0 .  003 0 .  000 0 .  000 0 .  000 
S108 23 .6  24 .6  24 .1  0 .  039 0  .253 0 .  004 0 .  012 0  .018 0 .  014 0 .  005 0 .  003 0 .  002 
S109 21 .2  25 .7  23 .5  0 .  040 0  .350 0 .  012 0 .  042 0  .052 0 .  050 0 .  018 0 .  010 0 .  006 
SllO 21 .3  24 .0  22 .7  0 .  041 0  .572 0 .  016 0 .  042 0  .053 0 .  046 0 .  022 0 .  016 0 .  012 
Sill 18 .8  17 .8  18 .3  0 .  051 0  .589 0 .  000 0 .  047 0  .069 0 .  061 0 .  019 0 .  000 0 .  000 
S112 26 .0  25 .7  25 .9  0 .  036 0  .285 0 .  002 0 .  016 0  .022 0 .  015 0 .  007 0 .  005 0 .  004 
S113 36 .6  26 .3  31 .5  0 .  030 0  .472 0 .  005 0 .  026 0  .045 0 .  044 0 .  010 0 .  004 0 .  002 
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Table 4.1 continued 

Median s torage 
delay factor  

ID for  winter .  T/(a2 - s )  Low f low indices  (csm) 
summer & mean 

(days)  (day"l)  

Kw Ks SDF 0.933/SDF Qra/A Q99%/A Q90%/A Q84%/A Q7,2/A Q7,5/A Q7,10/A Q7,20/A 

S114 24 .8  28.  6  26 .7  0 .  035 0  .332 0 .  005 0 .  020 0  .030 0 .  024 0 .  .010 0 .  006 0 .  004 
S115 21 .4  31.  6  26 .5  0 .  035 0  .285 0 .  008 0 .  022 0  .031 0 .  023 0 .  ,012 0 .  009 0 .  007 
S116 19 .8  24.  0  21 .9  0 .  043 0  .399 0 .  007 0 .  036 0  .050 0 .  033 0 .  015 0 .  010 0 .  007 
S117 12 .7  16.  7  14 .7  0 .  063 0  .402 0 .  008 0 .  039 0  .055 0 .  042 0 .  016 0 .  010 0 .  007 
S118 15 .6  16.  2  15 .9  0 .  059 0  .405 0 .  008 0 .  040 0  .052 0 .  048 0 .  021 0 .  013 0 .  009 
S119 21 .7  27.  9  24 .8  0 .  038 0  .332 0 .  014 0 .  037 0  .049 0 .  042 0 .  017 0 .  oil 0.  007 
S120 19 .8  26.  1  23 .0  0 .  041 0  .382 0 .  008 0 .  036 0  .049 0 .  040 0 .  014 0 .  008 0 .  005 
S123 16 .9  18.  2  17 .6  0 .  053 0  .519 0 .  001 0 .  018 0  .030 0 .  Oil 0.  002 0 .  000 0 .  000 
S124 12 .5  11.  9  12 .2  0 .  076 0  .368 0 .  002 0 .  036 0  .055 0 .  032 0 .  003 0 .  000 0 .  000 
S126 18 .0  23.  9  21 .0  0 .  045 0  .491 0 .  020 0 .  049 0  .067 0 .  059 0 .  023 0 .  014 0 .  009 
S128 22 .2  29.  5  25 .9  0 .  036 0  .449 0 .  017 0 .  060 0  .078 0 .  075 0 .  034 0 .  022 0 .  015 
S129 11 .6  16.  0  13 .8  0 .  068 0  .427 0 .  000 0 .  010 0  .022 0 .  016 0 .  000 0 .  000 0 .  000 
S130 18 .7  19.  7  19 .2  0 .  049 0  .518 0 .  020 0 .  048 0  .062 0 .  062 0 .  030 0 .  020 0 .  014 
S131 31 .0  25.  0  28 .0  0 .  033 0  .447 0 .  018 0 .  041 0  .057 0 .  047 0 .  023 0 .  017 0 .  012 
S132 20 .4  18.  6  19 .5  0 .  048 0  .400 0 .  Oil 0.  038 0  .056 0 .  050 0 .  019 0 .  Oil 0.  007 
S133 19 .6  17.  2  18 .4  0 .  051 0  .594 0 .  000 0 .  013 0  .027 0 .  006 0 .  000 0 .  000 0 .  000 
S134 23 .1  19.  3  21 .2  0 .  044 0  .466 0 .  009 0 .  024 0  .033 0 .  026 0 .  012 0 .  008 0 .  006 
S135 14 .6  14.  1  14 .4  0 .  065 0  ,622 0 .  004 0 .  016 0  .023 0 .  012 0 .  005 0 .  003 0 .  002 
S136 15 .9  13.  3  14 .6  0 .  064 0  .592 0 .  000 0 .  003 0  .006 0 .  002 0 .  000 0 .  000 0 .  000 
S137 10 .0  9 .  3  9  .7  0 .  097 0  .596 0 .  000 0 .  000 0  .002 0 .  000 0 .  000 0 .  000 0. 000 
S138 12 .5  14.  1  13 .3  0 .  070 0  .542 0 .  002 0 .  013 0  .021 0 .  014 0 .  005 0 .  002 0 .  001 
S139 11 .3  8 .  5  9  .9  0 .  094 0  .674 0 .  000 0 .  005 0  .009 0 .  003 0 .  000 0 .  000 0 .  000 
S140 9  .0  8 .  3  8  .7  0 .  108 0  .648 0 .  000 0 .  005 0  .008 0 .  003 0 .  001 0 .  000 0 .  000 
S141 8  .4  8 .  2  8  .3  0 .  112 0  .690 0 .  001 0 .  007 0  .011 0 .  004 0 .  001 0 .  001 0 .  000 
S142 10 .0  8 .  3  9  .2  0 .  103 0  .561 0 .  001 0 .  004 0  .008 0 .  003 0 .  001 0 .  000 0 .  000 
S143 11 .6  10.  7  11 .2  0 .  084 0  .475 0 .  001 0 .  003 0  .004 0 .  002 0 .  001 0 .  000 0 .  000 
a T=transmissivity, a=half width of the aquifer, and S=storage coefficient. 
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In addition to SDF's, Table 4.1 includes several other calculated indices 

relevant to low flow. 

Classification of stations 

Based on the calculated SDF's, the gaging stations are classified below: 

Class 1 SDF < 10 days/log cycle 5 stations 

Class 2 10 < SDF < 20 62 stations 

Class 3 20 < SDF < 30 52 stations 

Class 4 30 < SDF < 40 13 stations 

Class 5 40 < SDF 2 stations 

Low storage delay factors characterize the streams that receive little 

input from groundwater. Therefore, they recede faster and have smaller low 

flow indices. There are five stations in the above list which have the lowest 

SDF's (SDF < 10 days/log cycle). These stations are: S137, S139, S140, S141, and 

S142. They are all located close to each other in the Missouri River basin in the 

south central part of the state, southwest of the natural divide between the 

Missouri and Mississippi River basins, where the streams are generally low-

yielding. All five stations are near the divide with very little alluvium present. 

The underlying bed rock is Pennsylvanian, which is not a good water bearing 

formation. Other low flow indices for these stations are also small as expected 

(e.g., QRJ IQ/A is zero csm for all five, and QQ^<^JA is between 0.002 to 0.011 csm). 

On the other extreme, high storage delay factors are theoretically 

characteristic of streams with good groundwater/surface water connections. 

They are well-sustained streams with high low flow indices. The two stations 

with the highest SDF's (SDF > 40 daysAog cycle) are S13 (North Fork 
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Maquoketa River at Fulton) and S67 (Mississippi River at Keokuk). Both 

stations have the highest low flow indices. In fact, S13 is the station at which 

both Q84%/A and Q7 ig/A are maximum (see Table 4.1, colmnns 9 and 12). It is 

situated in Jackson County in the eastern part of Iowa, where groundwater is 

well connected to the streams through solution channels and caves developed 

in the silurian karst formation. The gaging station S67 at Keokuk is located 

further downstream on the Mississippi than any other station in Iowa, and the 

streamflow at this location is greater than anywhere else in the entire state. 

The stations in Class 4, (with SDF values between 30 and 40 days/log 

cycle), exhibit also high low flow indices as compared with Class 1 and 2. 

Table 4.2 lists the SDF's along with other indices for stations in this Class. 

Table 4.2. SDF's and low flow indices for stations in Class 4 

No. Assigned SDF Q84%/A Q7,10/A 
name day/log cycle csm csm 

1 S3 33.9 0.225 0.104 
2 S5 32.6 0.147 0.076 
3 S6 38.9 0.217 0.121 
4 S12 33.8 0.114 0.036 
5 S15 36.8 0.246 0.104 
6 S47 33.3 0.066 0.010 
7 S55 33.5 0.150 0.052 
8 S56 30.7 0.105 0.038 
9 S69 33.9 0.041 0.008 
10 S74 31.7 0.032 0.006 
11 S86 33.9 0.040 0.008 
12 S104 39.9 0.034 0.011 
13 S113 31.5 0.045 0.002 

Spatial variability of SDF's 

The variability of SDF values follow a general trend with respect to 

location. Stations on the tributaries are usually in Class 2, and as one moves 

in the downstream direction the storage delay factors increase. In some 
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occasions, however, the trend is not perfect due to locally influential factors 

which vary from one station to another. Extent and type of feeding aquifer(s), 

geology of the drainage basin, and existence of incised channel banks are some 

examples of such factors. There are regions where a trend is more regular 

due to a prevalent cause and effect relationship. For instance, the SDF value 

for S67 is high because this stream drains thick alluvial deposits, and stations 

in Class 1 are low-yielding points since they are all located within loess hills 

near the natural divide, with limited alluvial deposits to provide base flow. 

In those streams where the basin geology remains relatively uniform, a 

trend of increasing SDF's from upstream to downstream is observed. 

Considering several stations along the Des Moines River, for example, this 

trend is evident, as demonstrated below: 

Lizard Creek near Clare (S71), a tributary SDF = 15.0 

Des Moines River at Fort Dodge (S72) SDF = 24.3 

Des Moines River near Stratford (S74) SDF = 31.7 

Des Moines River at Des Moines (S86) SDF = 33.9 

All these stations are located within the Des Moines lobe. 

As another example, one can refer to stations along the Raccoon River. 

North Raccoon River near Sac City (S79) SDF = 18.2 

North Raccoon River near Jefferson (S80) SDF = 19.9 

Middle Raccoon River at Panora (S82) SDF = 28.7 

South Raccoon River at Redfield (S83) SDF = 22.9 

Raccoon River at van Meter (S84) SDF = 21.6 

The first three stations in this series are situated within the Des Moines lobe 

and therefore have similar geology, while the last two are not. In short, only if 



www.manaraa.com

112 

the basin geology remains unchanged do the SDF values increase in the 

downstream direction. 

Comparison ofSDF's and the work of Howe 

Howe (1968) calculated recession constants (fe) for 76 gaging stations in 

Iowa. The k values obtained by Howe were assumed to be constant for each 

station, whereas in this investigation a range for recession constants was 

instead calculated. Two stations used by Howe (Spring Valley Creek at Tabor 

with DA = 7.6 sq miles, and Honey Creek at Russell with DA = 13.2 sq miles) 

are no longer active. The average k values calculated by Howe for the 

r e m a i n i n g  7 4  s t a t i o n s  h a v e  b e e n  c o n v e r t e d  t o  s t o r a g e  d e l a y  f a c t o r s  { K )  

according to equation (2.2C) and tabulated in Table 4.3 together with the SDF's 

obtained in this research, for comparison. 

It is important to notice unreasonably high values for SDF's as recession 

constant values approach unity {k = 0,99 corresponds to SDF = 229 days/log 

cycle), a matter which was referred to as "bunching" by Martin (1973). 

As is evident from Table 4.3, although the k values calculated by Howe 

vary within a narrow range (0.858 to 0.990), the range of the corresponding 

storage delay factors (SDF) are unrealistically wide (15 to 229). The reason is 

that as k takes on values close to one, log k approaches zero; thus SDF values 

increase drastically according to equation (2.2C). 

Columns 4 and 5 in Table 4.3 show large differences between storage 

delay factors calculated by two different methods. While the range of the SDF's 

in the present research is between 9.2 and 33.9 days per log cycle, the storage 

delay factors calcidated by Howe range between 13.2 and 229 days per log cycle. 

The two SDF values are only comparable in a few stations, such as S12, S29, 
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Table 4.3. Storage delay factors for 74 gaging stations in Iowa as calculated 
by Howe and in this research 

No. Assigned Calculated SDF (davs/loa cvcle) 
name k By Howe In this research 

1 SI 0.980 114 25.5 
2 S4 0.940 37.2 21.8 
3 S7 0.970 75.6 25.5 
4 S9 0.980 114 25.3 
5 S12 0.935 34.3 33.8 
6 S14 0.980 114 -

7 S16 0.910 24.4 19.3 
8 S17 0.980 114 18.6 
9 SIB 0.980 114 26.3 
10 S20 0.943 39.2 21.4 
11 S21 0.980 114 18.1 
12 S23 0.967 68.6 19.8 
13 S24 0.960 56.4 16.9 
14 S26 0.955 50.0 22.1 
15 S27 0.883 18.5 13.8 
16 S28 0.973 84.1 19.7 
17 S29 0.920 27.6 26.3 
18 S30 0.980 114 23.9 
19 S31 0.887 19.2 13.5 
20 S32 0.930 31.7 16.6 
21 S33 0.970 75.6 23.8 
22 S3 7 0.928 30.8 17.0 
23 S41 0.980 114 20.3 
24 S42 0.972 81.1 17.8 
25 S43 0.910 24.4 17.4 
26 S44 0.960 56.4 18.4 
27 S47 0.965 64.6 33.3 
28 S48 0.973 84.1 16.5 
29 S56 0.960 56.4 30.7 
30 S57 0.910 24.4 13.8 
31 S60 0.960 56.4 20.9 
32 S61 0.950 44.6 28.9 
33 S62 0.940 37.2 21.1 
34 S65 0.860 15.3 14.4 
35 S66 0.957 52.4 19.3 
36 S73 0.940 37.2 13.9 
37 S77 0.957 52.4 22.2 
38 S78 0.930 31.7 19.5 
39 S80 0.965 64.6 19.9 
40 S81 0.898 21.4 16.6 
41 S82 0,970 75.6 28.7 
42 S83 0.970 75.6 22.9 
43 S84 0.970 75.6 21.6 
44 S86 0.950 44.9 33.9 
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Table 4.3 continued 

No. Assigned Calculated SDF (davs/loa cvcle) 
name k By Howe In this research 

45 S88 0.930 31.7 12.1 
46 S89 0.960 56.4 20.1 
47 S90 0.967 68.6 10.4 
48 S92 0.970 75.6 14.0 
49 S93 0.967 68.6 24.7 
50 S96 0.970 75.6 23.3 
51 SlOl 0.960 56.4 14.9 
52 S102 0.907 23.6 -

53 S105 0.860 15.3 11.7 
54 S108 0.963 61.1 24.1 
55 S112 0.940 37.2 25.9 
56 S114 0.950 44.9 26.7 
57 S115 0.973 84.1 26.5 
58 S116 0.960 56.4 21.9 
59 S117 0.980 114 14.7 
60 S120 0.960 56.4 23.0 
61 S124 0.900 21.9 12.2 
62 S126 0.980 114 21.0 
63 S128 0.955 50.0 25.9 
64 S129 0.950 44.9 13.8 
65 S130 0.970 75.6 19.2 
66 S131 0.962 59.4 28.0 
67 S132 0.965 64.6 19.5 
68 S133 0.910 24.4 18.4 
69 S134 0.940 37.2 21.1 
70 S136 0.840 13.2 14.6 
71 S138 0.947 42.3 13.3 
72 S139 0.990 229 9.9 
73 S142 0.880 18.0 9.2 
74 S143 0.858 15.0 11.2 

and S65. However, Howe's data in column 4 are much higher for almost all 

the other stations (with the exception of S136). 

The contrast is more noticeable by looking at the station S139 where the 

SDF calculated by Howe is 229 days (about 7.5 months), whereas the value 

calculated in this research is 9.9 days. 
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In general, no sign of a regular trend is evident in the data. In order to 

visualize the comparison and contrast of the two groups of the data, 11 stations 

in column 4 which have storage delay factors of more than 100 are eliminated 

and for the rest of the stations a plot of storage delay factors calculated by Howe 

versus those calculated in this research is given in Figure 4.6. 

Diffusivitv of the aquifer(s) 

A lumped parameter Tla^S, which includes the diffusivity of aquifer(s) 

providing base flow to the streams, has been calculated by equation (2.15) 

according to the method used by Bevans (1986) and reported in column 5 of 

Table 4,1. Equation (2.15) relates the characteristics of the contributing 

aqmfer(s) to the slope of the base flow recession curve (or to the storage delay 

factor) of each stream. 

T = transmissivity of the aquifer(s) in ft^/day (or m^/day) 

iS = storage coefficient of the aquifer(s) 

T / S  =  hydraulic diffusivity in day-i 

a = distance between the station and groundwater divide in fl (or m) 

In fact, a is a function of the width of the aquifer, and it is difficult to 

determine its value for each station. However, according to Bevans (1986), a 

corresponds to the drainage basin divide for a stream-aquifer system. 

The lumped parameter ranges between 0.021 and 0.112 dayi. Although 

this parameter consists of three variables and is difficult to interpret, it was 

calculated solely for the sake of comparison with similar parameters which 

were calculated for 18 selected streams in Eastern Kansas by Bevans (1986). 

His data range between 0.012 to 0.049 dayi. 
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Figure4.6. Scatter plot of storage delay factors calculated by Howe versus 
those calculated in this research 
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The application of multiple regression principles to the data yielded 

several predictive models for = Q84% and >*2 = Q7,io» each one taking a 

different number of explanatory variables into consideration. 

Useful Statistics 

As a first step in analysis, it would be helpful to obtain a general idea 

about the data by looking at the range, variability, and extreme values of the 

variables. This would later aid in the selection of an appropriate type for the 

model. Table 4.4 shows these statistics for all variables. Table 4.5 contains the 

same information for the natural logarithm of variables. 

Table 4.4, Informative statistics about variables 

Variable N Mean Std Dev. Sum Minimum Maximum 

Q84% 134 632. .19836 3254, .11702 84715 0 .02 26160 

Q7,10 134 290. .79754 1579. .83379 38967 0 .00 12000 
DA 134 5831. .13612 30248 781372 2 .94 314600 
SL 134 878. .57903 206. .26410 117730 477 .41 1331.55 
Qm 134 1958. .41560 7761. .62128 262428 1 .77 62640 
SDF 134 20. .77015 7. .12834 2783 .2 8 .30 43.80 

Table 4.5. Statistics about natural logarithms of variables 

Variable N Mean Std Dev. Sum Minimum Maximum 

In Q84% 134 2 .97568 2. .49777 398 .74088 -3 .91202 10.17199 

In Q7,10 109^ 1 .99254 2. 72928 217 .18647 -4 .60517 9.39266 
In DA 134 6 .27077 1. .93500 840 .28261 1 .07841 12.65906 
In EL 134 6 .75005 0, .24130 904 .50706 6 .16838 7.19410 
In Qm 134 5 .58349 1. .82785 748 .18699 0 .57098 11.04516 
In SDF 134 2 .97537 0. .34613 398 .69899 2 .11626 3.77963 

^ SAS treats the zero points as missing data 
Correlation matrices 
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In order to show how the explanatory variables individually and jointly 

affect the response variable, the correlation structure among variables was 

studied. The correlation matrices are shown in Tables 4.6 and 4.7 below. 

Table 4.6. Correlation matrix for Q84% with Prob > | R ] tinder Ho: Rho=0 

In Q84% In DA In EL In Qm In SDF 

In Q84% 1.00000 
0.0 

In DA 0.92065 
0.0001 

1.00000 
0.0 

In EL -0.27370 
0.0014 

-0.21631 
0.0121 

1.00000 
0.0 

In Qm 0.93667 
0.0001 

0.98609 
0.0001 

-0.31084 
0.0003 

1.00000 
0.0 

In SDF 0.72505 
0.0001 

0.56287 
0.0001 

-0.14799 
0.0879 

0.56758 
0.0001 

1.00000 
0.0 

Table 4.7. Correlation matrix for with Prob > 1 R 1  u n d e r  H o :  R h o :  =0 

In Q7,10 In DA In EL In Qm In SDF 

In Q7,10 1.00000 
O.O 

109 

In DA 0.83514 
0.0001 

109 

1.00000 
0.0 

134 

In EL -0.34285 
0.0003 

109 

-0.21631 
0.0121 

134 

1.00000 
0.0 

134 

In Qm 0.86052 
0.0001 

109 

0.98609 
0.0001 

134 

-0.31084 
0.0003 

134 

1.00000 
0.0 

134 

In SDF 0.72284 
0.0001 

109 

0.56287 
0.0001 

134 

-0.14799 
0.0879 

134 

0.56758 
0.0001 

134 

1.00000 
0.0 

134 
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Although correlation matrices of other algebraic functions of the 

explanatory variables, such as 1/xi's, xf's, and their cross products, were 

studied while searching for the best tjrpe of model, they are not mentioned 

here. This is because the possible second order and interactive models 

obtained from these data proved faulty due to poor predictive ability. They 

predicted unrealistic negative values for response variables and therefore, 

were discarded from further analysis. 

Tables 4.6 and 4.7 show the correlation existed not only between response 

and explanatory variables, but among explanatory variables as well. The four 

explanatory variables in descending order of their correlation coefficients with 

In Q84% listed as In {R = 0.937), In DA {R = 0.921), In SDF (J2 = 0.725), 

and In EL (R = -0.274). Likewise, the same variables in decreasing order of 

their correlation coefficients with the other response variable. In Qv.io, would 

be ranked as In Qj^iR = 0.861), In DA (R = 0.835), In SDF (iJ = 0.723), and In EL 

(i? = -0.343). Therefore, it is reasonable to expect these variables to be included 

in the models in the same order of preference. One additional important point 

that should be noticed is the presence of high dependency between two of the 

explanatory variables, In DA and In {R = 0.986), suggesting possible 

collinearity problem if they were both picked after the screening process. 

Models for ^84% 

For yi = ^84% 21 response variable, different exponential models have 

been proposed. These models can be divided into two categories: (1) general 

models and (2) restricted models. The word general is used within the context 

of nonrestriction in terms of the selection among four available explanatory 

variables, whereas restricted models contain only those explanatory variables 
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that are readily available for all ungaged sites. The independent variables 

which satisfy this condition are drainage area (DA) and datum elevation (EL). 

General models To explain the model bviilding process, the approach 

that has been taken to obtain the final results is discussed in more detail for 

the first model. The remaining models are mentioned briefly. 

After it was realized that the exponential model was the best choice, the 

next step was to use all 134 stations' data points to estimate the 

multiregression coefficients (jS's) with this model. It must then be decided 

how many and which variables should be included in the model. While the 

stepwise procedure will later answer this question through its screening 

ability, a good insight can be gained by looking at Table 4.8. 

Table 4.8. R-square and Cp for possible regression models for In $84% (N = 134) 

Number of variables R-sguare Cp Variables in Model 
in the Model 

1 0 .87735290 109 .32426 In Qm 
1 0 .84759992 167 .38198 In DA 
1 0 .52569515 795 .52257 in SDF 
1 0 .07491404 1675 In EL 

2 0 .93253957 3 .63717 In Qm In SDF 
2 0 .91022405 47 .18199 In DA In SDF 
2 0 .87768983 110 .66681 In EL In Qm 
2 0 .87767730 110 .69125 In DA In Qm 
2 0 .85343139 158 .00289 In DA In EL 
2 0 .55400613 742 .27866 In EL In SDF 

3 0 .93309096 4 .56123 In DA In Qm In SDF 
3 0 .93263611 5 .44880 In EL In Qm In SDF 
3 0 .91488421 40 .08850 In DA In EL In SDF 
3 0 .87889446 110 .31618 In DA In EL In Qm 

4 0.93389105 5.00000 In DA In EL In Qm In SDF 
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This table gives the i?2 and Cp for all possible combinations of 

explanatory variables which have the potential to be included in the model. It 

is notable that the best one-variable model should include In with = 0.877 

and Cp = 109.32, and the best two-variable model must include In and In 

SDF with R^ = 0.933 and Cp = 3.64. Also, the inclusion of the other two 

variables does not improve the models significantly. 

Part of the output resulting from application of the exponential model 

fitted by stepwise procedure to the complete data set is given in Table 4.9. 

Table 4.9. Analysis of variance and parameter estimates for In ^84% (N=134) 

Analysis of Variance 

Soiirce DF 
Sum of 

Squares 
Mean 

Squeure F Value Prob>F 

Model 2 773.79176 386.89588 905.440 0.0001 
Error 131 55.97652 0.42730 
C Total 133 829.76829 

Root MSE 0.65368 R-square 0.9325 
Dep Mean 2.97568 Adj R-sq 0.9315 
C.V. 21.96754 

Parameter Estimates 

Parameter Standard T for HO: Variance 
Variable DF Estimate Error Parameter=0 Prob > (T| Inflation 

WERCEP 1 -9.061799 0.50633126 -17.897 0.0001 0.00000000 
In 1 1.058665 0.03766460 28.108 0.0001 1.47524596 
In SDF 1 2.059053 0.19890208 10.352 0.0001 1.47524596 

The fitted model for is: 

In Qs4% = -9.062 +1.059 hi + 2.059 hi SDF (4.1) 

The R^ is 0.933, the mean square error (MSE) is 0.427, with standard error of 

estimate Sg = 0.65 and a high F value of 905.44 in the analysis of variance 

(ANOVA) table. The variance inflation factor is small (1.475) for both In Qm 
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and In SDF indicating no collinearity between the two explanantory variables. 

The regression results are given in Table 4.10. 

The table shows the actual and predicted values for In Q84%j together 

with standard error of estimates, and 95% confidence intervals for both mean 

and predicted values. Residuals, the difference between actual and predicted 

values, are also included in the last column. A quick examination of this table 

gives a preliminary indication of goodness of fit. There are many points with 

the same integer for actual and predicted values; some even have the same 

value to one decimal place. Figures 4.7 to 4.9 give a graphical view of the 

residuals. A possible outlier point is shown with a zero character (0). For an 

unbiased model the residuals are expected to be evenly distributed within the 

three standard deviations on both sides of the zero line. 

Table 4.10. Results of regression analysis for response variable In (N=134) 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95% 
name In Q84% Value Predict Mean Mean Predict Predict Residual 

SI 4.2905 3. .7364 0.074 3. .5893 3. .8836 2. .4349 5. ,0379 0. 5540 
S2 4.3041 3. .9175 0.085 3. .7503 4. .0847 2. ,6136 5. ,2214 0. ,3866 
S3 5.1533 4, ,9239 0.111 4. .7044 5. .1434 3. ,6123 6. ,2356 0. ,2294 
S4 1.0647 0. .2126 0.132 -0. .0487 0, .4739 -1. .1067 1. ,5319 0. ,8521 
S5 3.4965 3. .3441 0.130 3. .0877 3. .6005 2. ,0258 4. .6625 0. ,1524 
S6 9.5929 9. .5674 0.165 9. .2410 9. .8938 8. ,2337 10. ,9011 0. ,0254 
S7 3.1781 2. ,7184 0.092 2. .5367 2. .9000 1. ,4125 4. ,0242 0. 4597 
S8 4.4188 3. .4862 0.065 3. .3581 3, .6142 2. ,1867 4. .7857 0. ,9327 
S9 5.3327 4. ,8526 0.073 4, .7085 4. .9968 3. ,5515 6. .1538 0. ,4801 
SIO 2.8332 2. ,1494 0.091 1. .9701 2 .3287 0. .8439 3. .4549 0. .6838 
Sll 3.8286 2. .8181 0.059 2. .7014 2 .9348 1. .5197 4. .1165 1. .0105 
S12 1.9459 2, .2146 0.166 1 .8855 2 .5438 0. .8803 3. .5490 -0. .2687 
S13 5.0876 4. .7907 0.147 4, .4996 5 .0819 3. .4652 6. .1163 0. .2969 
S15 9.9570 9. ,7605 0.171 9, .4223 10, .0988 8. .4239 11. ,0972 0. .1965 
S16 2.1282 1. .4830 0.076 1, .3334 1, .6326 0. .1812 2, .7848 0. .6452 
S17 4.2341 3, ,7624 0.068 3. .6270 3, .8977 2. .4621 5. .0626 0. .4717 
S18 5.6937 5, .4453 0.081 5 .2846 5, .6061 4. .1422 6, .7484 0. .2484 
S19 0.9555 0, .0352 0.126 -0 .2134 0 .2839 -1, .2816 1, .3521 0, .9203 
S20 0.6678 1 .1024 0.101 0 .9017 1 .3031 -0, .2062 2 .4111 -0, .4346 
S21 1.6487 1 .3365 0.072 1 .1931 1 .4799 0 .0354 2 .6376 0 .3122 
S22 3.1355 2 .8229 0.058 2 .7082 2 .9377 1 .5247 4 .1212 0, .3126 
S23 4.5951 4 .1875 0.070 4 .0492 4 .3258 2 .8870 5 .4880 0 .4076 
S24 1.5261 1 .3206 0.069 1 .1842 • 1 .4571 0 .0203 2 .6210 0 .2054 
S25 0.7885 0 .7262 0.089 0 .5510 0 .9014 -0 .5788 2 .0312 0 .0623 
S26 2.6247 2 .4894 0.072 2 .3474 2 .6314 1 .1885 3 .7903 0 .1353 
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Table 4.10 continued 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% l^per95% 
name In Q84% Value Predict Mean Mean Predict Predict Residual 

S27 0. 7885 0. 3725 0.085 0. 2043 0. 5408 -0.9315 1. 6766 0. 4159 
S28 4. 8598 4. 5419 0.079 4. 3863 4. 6975 3.2394 5. 8444 0. 3179 
S29 2. 0794 2. 7735 0.097 2. 5822 2. 9648 1.4663 4. 0807 -0. 6940 
S30 5. 6525 5. 4233 0.082 5. 2606 5. 5859 4.1199 6. 7266 0. 2292 
S31 -1. 2040 -0. 7543 0.105 -0. 9611 -0. 5476 -2.0639 0. 5552 -0. 4496 
S32 1. 4351 1. 1711 0.071 1. 0307 1. 3115 -0.1296 2. 4719 0. 2640 
S33 5. 3845 5. 1871 0.078 5. 0337 5. 3404 3.8848 6. 4893 0. 1974 
S34 -3. soee -3. 2079 0.167 -3. 5380 -2. 8777 -4.5425 -1. 8732 -0. 2987 
S3 5 -2. 1203 -2. 8361 0.157 -3. 1470 -2. 5252 -4.1661 -1. 5061 0. 7158 
S3 6 0. 6313 1. 5551 0.068 1. 4210 1. 6892 0.2550 2. 8552 -0. 9238 
S37 2. 9232 3. 0381 0.067 2. 9046 3. 1716 1.7380 4. 3381 -0. 1149 
S38 6. 2226 5. 9727 0.094 5. 7858 6. 1595 4.6661 7. 2792 0. ,2499 
S39 5. ,2257 4. 6717 0.077 4. 5200 4. ,8235 3.3697 5. 9738 0. ,5540 
S40 3. .2189 2. 5907 0.060 2. ,4729 2. ,7084 1.2921 3. 8892 0. ,6282 
S41 5. ,2523 4. ,2955 0.070 4. ,1576 4. ,4333 2.9950 5. 5959 0. .9568 
S42 4. ,1431 3. ,4647 0.068 3. ,3293 3, ,6001 2.1645 4. 7649 0. .6784 
S43 3. .1355 2. ,2059 0.060 2. ,0873 2. ,3245 0.9073 3. 5045 0. .9296 
S44 3. .2958 2. ,8299 0.058 2. .7156 2. .9442 1.5317 4. 1281 0. .4659 
S45 4.4188 3. .7392 0.069 3. .6034 3, .8750 2.4390 5. ,0395 0. .6796 
S46 5. .2364 4. .8076 0.071 4. .6668 4, .9485 3.5068 6. ,1084 0. .4288 
S47 3. .1355 3. .7602 0.125 3. .5120 4. ,0083 2.4434 5. ,0769 -0. .6247 
S48 3. .0445 2. .1599 0.063 2. .0350 2. ,2849 0.8608 3. ,4591 0. ,8846 
S49 6. .5162 5, .9434 0.095 5. ,7548 6. ,1319 4.6366 7. ,2502 0. ,5728 
S50 -0. .4308 -0. .5289 0.144 -0. ,8135 -0. ,2443 -1.8530 0. ,7952 0. ,0981 
S52 0, .0100 -0. ,3237 0.129 -0, ,5798 -0, .0677 -1.6420 0. .9945 0. ,3337 
S53 6. .7105 6. .3257 0.098 6, .1322 6. .5193 5.0182 7. .6333 0. .3848 
S54 2 .8332 2. .3426 0.065 2, .2144 2, .4708 1.0431 3, .6421 0. .4906 
S55 7 .0596 7. .1310 0.115 6, .9037 7, .3583 5.8180 8. .4440 -0, .0714 
S56 7 .1778 7. .1894 0.114 6, .9639 7, .4149 5.8768 8. ,5021 -0, .0116 
S57 1 .5085 1. ,7351 0.083 1, .5704 1. .8998 0.4315 3. .0387 -0, .2266 
S58 1 .4110 2, ,0081 0.061 1 .  .8877 2. .1285 0.7094 3. ,3059 -0 .5971 
S59 1 .0578 2, ,8499 0.063 2, .7254 2, .9743 1.5508 4, .1490 -1 .7921 
S60 2 .0794 2, .7520 0.061 2 .6318 2, .8723 1.4533 4, .0508 -0 .6726 
S61 4 .3307 5, .1409 0.085 4 .9724 5. .3094 3.8368 6, .4450 -0 .8102 
S62 3 .3322 3, .6797 0.059 3 .5633 3 .7962 2.3814 4. .9781 -0 .3475 
S63 5 .0304 5, .0340 0.076 4 .8842 5 .1837 3.7322 6. .3358 -0 .0036 
S64 3 .0445 3 .0735 0.066 2 .9420 3 .2049 1.7737 4. .3733 -0 .0289 
S65 -0 .5108 0 .8688 0.078 0 .7150 1 .0226 -0.4335 2 .1711 -1 .3796 
see 5 .4381 5 .2970 0.102 5 .0944 5 .4997 3.9881 6. .6060 0 .1410 
S67 10 .1720 10 .4138 0.184 10 .0504 10 .7772 9.0706 11, .7570 -0 .2418 
S69 4 .5326 5 .4529 0.107 5 .2414 5 .6645 4.1426 6 .7633 -0 .9203 
870 3 .4340 3 .6502 0.066 3 .5202 3 .7802 2.3505 4 .9499 -0 .2162 
371 1 .1184 1 .3496 0.072 1 .2074 1 .4919 0.0487 2 .6506 -0 .2312 
S72 4 .8752 5 .3148 0.079 5 .1579 5 .4718 4.0122 6 .6175 -0 .4396 
S73 3 .1091 2 .7393 0.097 2 .5472 2 .9315 1.4320 4 .0467 0 .3697 
S74 5 .1591 6 .0943 0.099 5 .8980 6 .2907 4.7863 7 .4023 -0 .9353 
S76 1 .5173 2 .5719 0.058 2 .4572 2 .6865 1.2736 3 .8701 -1 .0545 
877 5 .2095 5 .3598 0.086 5 .1896 5 .5299 4.0555 6 .6641 -0 .1503 
878 -0 .0513 1 .0289 0.089 0 .8535 1 .2043 -0.2761 2 .3339 -1 .0802 
S79 3 .0445 3 .1555 0.061 3 .0345 3 .2765 1.8567 4 .4543 -0 .1110 
S80 4 .0073 4 .0976 0.068 3 .9639 4 .2313 2.7976 5 .3977 -0 .0903 
S81 -3 .9120 -0 .7777 0.120 -1 .0156 -0 .5398 -2.0926 0 .5371 -3 .1343 
S82 3 .4340 3 .4217 0.101 3 .2225 3 .6208 2.1133 4 .7301 0 .0123 
S83 4 .2047 3 .8945 0.062 3 .7717 4 .0173 2.5956 5 .1935 0 .3101 
S84 4 .9904 4 .9515 0.079 4 .7962 5 .1068 3.6491 6 .2540 0 .0389 
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Table 4.10 continued 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95% 
name In Q84% Value Predict Mean Mean Predict Predict Residual 

S85 1. 4351 0. 9659 0. 074 0. 8202 1. 1117 -0. 3354 2. 2673 0. 4691 
S86 5. 9687 7. 0066 0. 114 6. 7814 7. 2317 5. 6939 8. 3192 -1. 0378 
S87 1. 2179 1. 2335 0. 070 1. 0955 1. 3716 -0. 0670 2. 5340 -0. 0157 
S88 1. 4493 1. 5985 0. 105 1. 3902 1. 8067 0. 2886 2. 9083 -0. 1492 
S89 2. 4849 3. 0159 0. 057 2. 9037 3. 1281 1. 7179 4. 3139 -0. 5310 
S90 1. .5261 1. 6012 0. 137 1. 3306 1. 8719 0. 2801 2. 9224 -0. 0752 
S91 1. ,4351 1. 8390 0. 096 1. 6484 2. 0295 0. 5318 3. 1461 -0. 4039 
S92 0. ,7885 1. 9707 0. 083 1. 8058 2. 1355 0. 6670 3. 2743 -1. 1822 
S93 6. ,2146 6. 3807 0. 104 6. 1759 6. 5856 5. ,0715 7. 6900 -0. 1661 
S94 1. ,4110 1. ,9357 0. 095 1. 7483 2. 1232 0. ,6291 3. 2424 -0. ,5247 
S95 6. ,3351 6. 5322 0. 107 6. 3212 6. ,7431 5. ,2219 7. 8424 -0. ,1971 
S96 6. ,4313 6. 4710 0. 112 6, 2500 6. ,6920 5. ,1591 7. 7829 -0. ,0397 
S97 -0. ,3857 0. 5094 0. 102 0. 3077 0. 7111 -0. ,7994 1. 8182 -0. .8951 
S98 -0. ,4308 -0. 1511 0. 121 -0. 3912 0. ,0890 -1. ,4664 1. 1641 -0. ,2796 
S99 0. .8755 0. ,5697 0. 126 0. 3202 0. ,8193 -0. ,7473 1. 8868 0. .3057 
SlOO 2. ,3795 2. ,7539 0. 073 2. 6100 2. ,8979 1. ,4528 4. 0551 -0. .3744 
SlOl 3. .1527 2. ,8925 0. 087 2. ,7211 3. ,0640 1. ,5881 4. ,1970 0. .2602 
S103 4. .4773 4. ,7208 0. 071 4. ,5813 4. ,8603 3. .4202 6. ,0215 -0. .2435 
S104 9. .2629 9. ,4274 0. ,162 9. ,1073 9. .7476 8. .0953 10. ,7596 -0. .1645 
S105 0. .0583 -0, .9794 0. ,111 -1. ,1990 -0. .7598 -2. .2911 0. ,3322 1, .0377 
S106 0. .6627 0, .8610 0. .082 0. ,6991 1. .0229 -0. .4423 2.1642 -0, .1983 
S107 -0. .1054 -0. ,0365 0. ,109 -0. .2519 0. .1789 -1. .3475 1. .2744 -0, .0688 
S108 2. .7600 3. ,2197 0. ,072 3. ,0767 3. .3627 1. .9186 4, .5207 -0, .4597 
S109 3. ,0445 2. ,6777 0. ,078 2. .5239 2. .8315 1. .3754 3, .9800 0 .3668 
SllO 3. .8712 3. .9778 0. .062 3. ,8553 4. .1003 2. .6789 5. .2767 -0, .1066 
Sill 3, .3878 2. .7733 0. .058 2. .6589 2, .8877 1, ,4751 4. .0715 0, .6145 
S112 3, .3673 3. .9275 0. .075 3. .7795 4. .0756 2. .6259 5. .2291 -0, .5602 
S113 4, .2341 5. .0232 0. .097 4. .8307 5. .2157 3, ,7158 6, .3306 -0, .7891 
S114 4, .3307 4. .8185 0. .076 4. .6676 4. .9694 3, ,5166 6, .1204 -0 .4878 
S115 4, .4308 4, .7360 0. .075 4. .5870 4. .8850 3, .4343 6, .0377 -0 .3052 
S116 0 .6831 0, .2086 0. .133 -0. .0546 0, .4719 -1, .1110 1, .5283 0 .4745 
S117 3. .6109 2, .3955 0. .081 2. .2362 2, .5549 1, .0926 3 .6985 1 .2154 
S118 5, .2095 4, .3236 0. .109 4. .1078 4, .5395 3 .0126 5 .6347 0 .8859 
S119 2, .9957 2, .7425 0. .086 2, .5724 2. .9126 1 .4383 4 .0468 0 .2532 
S120 3, .7612 3, .5432 0. .063 3, .4186 3, .6679 2, .2441 4 .8424 0 .2180 
S123 -0, .0305 -0, .1824 0, .110 -0. .3994 0, .0345 -1 .4937 1, .1288 0 .1520 
S124 0, .5068 -1, .3536 0, .116 -1, .5838 -1, .1234 -2 .6670 -0 .0401 1 .8604 
S126 3 .7136 3 .2419 0, .058 3, .1278 3 .3560 1 .9437 4 .5401 0 .4717 
S128 4 .6444 4 .4022 0 .073 4. .2585 4 .5459 3 .1011 5 .7033 0 .2422 
S129 -0 .5798 -1 .1093 0 .114 -1 .3340 -0 .8847 -2.4218 0 .2032 0 .5295 
S130 3 .2958 2 .7611 0 .057 2 .6489 2 .8732 1 .4630 4 .0591 0 .5348 
S131 3 .9318 4 .1423 0 .085 3 .9742 4 .3105 2 .8383 5 .4464 -0 .2105 
S132 5 .0499 4 .4893 0 .079 4 .3337 4 .6449 3 .1868 5 .7918 0 .5605 
S133 0 .2927 0 .5106 0 .095 0.3223 0 .6990 -0.7962 1 .8174 -0 .2180 
S134 3 .2189 3 .4432 0 .058 3 .3285 3 .5578 2 .1449 4 .7414 -0 .2243 
S135 1.6094 1 .6232 0 .076 1 .4723 1 .7741 0 .3213 2 .9251 -0 .0138 
S136 -0 .6162 0 .6913 0 .079 0 .5354 0 .8473 -0 .6112 1 .9938 -1 .3075 
S137 -2 .0402 -0 .7377 0 .128 -0 .9915 -0 .4840 -2 .0555 0 .5801 -1 .3025 
S138 2 .6946 2 .5552 0 .102 2 .3526 2 .7578 1 .2463 3 .8641 0 .1394 
S139 -0 .0408 0 .1579 0 .128 -0 .0956 0 .4113 -1 .1599 1 .4757 -0 ,1987 
S140 0 .3920 0 .4432 0 .157 0 .1329 0 .7534 -0 .8867 1 .7730 -0 .0511 
S141 0.6206 0 .3281 0 .165 0 .0013 0 .6550 -1 .0057 1 .6620 0 .2924 
S142 1 .5041 1 .5739 0 .164 1 .2502 1 .8977 0 .2409 2 .9070 -0 .0698 
S143 1 .0647 2 .0711 0 .129 1 .8150 2 .3272 0 .7528 3 .3893 -1 .0064 
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Figure 4.7. Scatter plot of residuals versus predicted values of In Qg4%. 
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Table 4.11 shows several diagnostic measures used to detect any sign of 

inconsistency among the results. It shows station SSI as a potential outlier 

(Residuals = -3.134, Student residual = -4.878, Cook's D = 0.278, and Rstudent = 

-5.3717). This conclusion is further confirmed by examining the residual plots 

in Figures 4.7 to 4.9, which show this point with a zero (0). 

Table 4.11. Diagnostic measures for regression analysis of In $34% (N =134) 

Assigned Std Err Student Cook's Hat Diag Gov 
name Residual Residual -2-1-0 1 2 D Rstudent H Ratio 

SI 0.649 0.853 1* 0.003 0.8522 0.0129 1.0195 
S2 0.648 0.596 * 0.002 0.5949 0.0167 1.0322 
S3 0.644 0.356 0.001 0.3549 0.0288 1.0506 
S4 0.640 1.331 ** 0.025 1.3349 0.0408 1.0241 
S5 0.641 0.238 0.001 0.2370 0.0393 1.0638 
S6 0.633 0.040 0.000 0.0401 0.0637 1.0928 
SI 0.647 0.710 * 0.003 0.7089 0.0197 1.0318 
S8 0.650 1.434 ** 0.007 1.4397 0.0098 0.9855 
S9 0.650 0.739 • 0.002 0.7377 0.0124 1.0232 
SIO 0.647 1.056 0.007 1.0567 0.0192 1.0169 
Sll 0.651 1.552 *** 0.007 1.5607 0.0081 0.9758 
S12 0.632 -0.425 0.004 -0.4238 0.0648 1.0896 
S13 0.637 0.466 0.004 0.4647 0.0507 1.0725 
S15 0.631 0.311 0.002 0.3103 0.0684 1.0960 
S16 0.649 0.994 • 0.004 0.9937 0.0134 1.0139 
S17 0.650 0.726 * 0.002 0.7243 0.0110 1.0222 
S18 0.649 0.383 0.001 0.3817 0.0155 1.0358 
S19 0.641 1.435 "kit 0.026 1.4405 0.0370 1.0132 
S20 0.646 -0.673 * 0.004 -0.6716 0.0241 1.0377 
S21 0.650 0.481 0.001 0.4791 0.0123 1.0305 
S22 0.651 0.480 0.001 0.4786 0.0079 1.0259 
S23 0.650 0.627 * 0.002 0.6257 0.0114 1.0258 
S24 0.650 0.316 0.000 0.3149 0.0111 1.0324 
S25 0.648 0.096 0.000 0.0958 0.0184 1.0422 
S26 0.650 0.208 0.000 0.2074 0.0121 1.0347 
S27 0.648 0.642 * 0.002 0.6403 0.0169 1.0311 
S28 0.649 0.490 0.001 0.4884 0.0145 1.0326 
S29 0.646 -1.074 ** 0.009 -1.0742 0.0219 1.0188 
S30 0.648 0.353 0.001 0.3523 0.0158 1.0367 
S31 0.645 -0.697 • 0.004 -0.6955 0.0256 1.0385 
S32 0.650 0.406 0.001 0.4049 0.0118 1.0316 
S33 0.649 0.304 0.000 0.3031 0.0141 1.0356 
S34 0.632 -0.473 0.005 -0.4712 0.0652 1.0890 
S3 5 0.635 1.128 ** 0.026 1.1294 0.0578 1.0547 
S3 6 0.650 -1.421 ** 0.007 -1.4265 0.0107 0.9873 
S37 0.650 -0.177 0.000 -0.1761 0.0107 1.0335 
S38 0.647 0.386 0.001 0.3851 0.0209 1.0415 
S39 0.649 0.853 * 0.003 0.8525 0.0138 1.0203 
S40 0.651 0.965 * 0.003 0.9648 0.0083 1.0100 
S41 0.650 1.472 •k* 0.008 1.4787 0.0114 0.9845 
S42 0.650 1.044 ** 0.004 1.0440 0.0110 1.0090 
S43 0.651 1.428 *-k 0.006 1.4339 0.0084 0.9845 
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Table 4.11 continued 

Assigned Std Err Student Cook's Hat Diag Gov 
name Residual Residual -2-1-0 1 2 D Rstudent H Ratio 

S44 0 651 0.716 * 0 001 0 7143 0 0078 1.0193 
S45 0 650 1.045 ** 0 004 1 0458 0 0110 1.0090 
S46 0 650 0.660 * 0 002 0 6585 0 0119 1.0253 
S47 0 642 -0.974 • 0 012 -0 9735 0 0368 1.0395 
S48 0 651 1.360 ** 0 006 1 3640 0 0093 0.9898 
S49 0 647 0.886 * 0 006 0 8850 0 0213 1.0268 
S50 0 638 0.154 0 000 0 1533 0 0484 1.0748 
S52 0 641 0.521 * 0 004 0 5193 0 0392 1.0584 
S53 0 646 0.595 * 0 003 0 5939 0 0224 1.0382 
S54 0 650 0.754 * 0 002 0 7530 0 0098 1.0200 
S55 0 644 -0.111 0 000 -0 1105 0 0309 1.0556 
S56 0 644 -0.018 0 000 -0 0180 0 0304 1.0553 
S57 0 648 -0.349 0 001 -0 3483 0 0162 1.0372 
S58 0 651 -0.917 * 0 002 -0 9169 0 0087 1.0124 
S59 0 651 -2.754 ***** 0 024 -2 8268 0 0093 0.8636 
S60 0 651 -1.033 ** 0 003 -1 0337 0 0087 1.0071 
S61 0 648 -1.250 ** 0 009 -1 2528 0 0170 1.0041 
S62 0 651 -0.534 * 0 001 -0 5324 0 0081 1.0249 
S63 0 649 -0.005 0 000 -0 0055 0 0134 1.0372 
S64 0 650 -0.045 0 000 -0 0443 0 0103 1.0339 
S65 0 649 -2.126 **** 0 022 -2 1550 0 0141 0.9342 
S66 0 646 0.218 0 000 0 2177 0 0246 1.0479 
S67 0 627 -0.385 0 004 -0 3842 0 0790 1.1072 
S69 0 645 -1.427 ** 0 019 -1 4328 0 0268 1.0031 
S70 0 650 -0.332 0 000 -0 3313 0 0101 1.0311 
S71 0 650 -0.356 0 001 -0 3547 0 0121 1.0328 
S72 0 649 -0.678 * 0 002 -0 6761 0 0147 1.0277 
S73 0 646 0.572 * 0 002 0 5705 0 0221 1.0385 
S74 0 646 -1.448 ** 0 016 -1 4537 0 0231 0.9979 
S76 0 651 -1.620 *** 0 007 -1 6298 0 0079 0.9706 
S77 0 648 -0.232 0 000 -0 2311 0 0173 1.0400 
S78 0 648 -1.668 *** 0 017 -1 6794 0 0184 0.9774 
S79 0 651 -0.171 0 000 -0 1699 0 0088 1.0316 
S80 0 650 -0.139 0 000 -0 1383 0 0107 1.0339 
S81 0 643 -4.878 ****** 0 278 -5 3717 0 0338 0.5804 
S82 0 646 0.019 0 000 0 0190 0 0237 1.0481 
S83 0 651 0.477 0 001 0 4752 0 0090 1.0272 
S84 0 649 0.060 0 000 0 0598 0 0144 1.0381 
S85 0 650 0.722 * 0 002 0 7210 0 0127 1.0241 
S86 0 644 -1.612 *** 0 027 -1 6223 0 0303 0.9937 
S87 0 650 -0.024 0 000 -0 0240 0 0114 1.0350 
S88 0 645 -0.231 0 000 -0 2304 0 0259 1.0492 
S89 0 651 -0.815 * 0 002 -0 8143 0 0075 1.0154 
S90 0 639 -0.118 0 000 -0 1172 0 0438 1.0698 
S91 0 647 -0.625 * 0 003 -0 6232 0 0217 1.0366 
S92 0 648 -1.823 *** 0 018 -1 8399 0 0162 0.9630 
S93 0 645 -0.257 0 001 -0 2565 0 0251 1.0480 
S94 0 647 -0.811 * 0 005 -0 8102 0 0210 1.0295 
S95 0 645 -0.306 0 001 -0 3046 0 0266 1.0490 
S96 0 644 -0.062 0 000 -0 0614 0 0292 1.0540 
S97 0 646 -1.386 ** 0 016 -1 3912 0 0243 1.0033 
S98 0 642 -0.435 0 002 -0 4340 0 0345 1.0552 
S99 0 641 0.477 0 003 0 4753 0 0372 1.0573 
SIQO 0 650 -0.576 * 0 001 -0 5749 0 0124 1.0282 
SlOl 0 648 0.402 0 001 0 4003 0 0176 1.0377 
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Table 4.11 continued 

Assigned Std Err Student Cook's Hat Diag Gov 
name Residual Residual -2-1-0 1 2 D Rstudent H Ratio 

S103 0 650 -0.375 0.001 -0.3734 0.0116 1.0320 
S104 0 633 -0.260 0.001 -0.2588 0,0613 1.0884 
S105 0 644 1.611 •kick 0.026 1.6208 0.0288 0.9923 
S106 0 649 -0.306 0.000 -0.3047 0.0157 1.0373 
S107 0 645 -0.107 0.000 -0.1064 0.0277 1.0522 
S108 0 650 -0.708 *  0.002 -0.7062 0.0122 1.0241 
S109 0 649 0.565 •k 0.002 0.5637 0.0141 1.0304 
SllO 0 651 -0.164 0.000 -0.1632 0.0090 1.0319 
Sill 0 651 0.944 *  0.002 0.9434 0.0078 1.0104 
S112 0 649 -0.863 *  0.003 -0.8618 0.0131 1.0193 
S113 0 646 -1.221 ** 0.011 -1.2230 0.0222 1.0111 
S114 0 649 -0.751 *  0.003 -0.7501 0.0136 1.0240 
S115 0 649 -0.470 0.001 -0.4686 0.0133 1.0318 
S116 0 640 0.741 • 0.008 0.7401 0.0415 1.0541 
S117 0 649 1.874 *it* 0.018 1.8919 0.0152 0.9577 
SllS 0 645 1.374 ** 0.018 1.3792 0.0279 1.0077 
S119 0 648 0.391 0.001 0.3895 0.0173 1.0376 
S120 0 651 0.335 0.000 0.3339 0.0093 1.0302 
S123 0 644 0.236 0.001 0.2350 0.0281 1.0516 
S124 0 643 2.892 ***** 0.091 2.9778 0.0317 0.8670 
S126 0 651 0.724 *  . 0.001 0.7231 0.0078 1.0189 
S128 0 650 0.373 0.001 0.3716 •0.0123 1.0328 
S129 0 644 0.823 * 0.007 0.8215 0.0302 1.0388 
S130 0 651 0.821 * 0.002 0.8202 0.0075 1.0152 
S131 0 648 -0.325 0.001 -0.3237 0.0169 1.0383 
S132 0 649 0.864 * 0.004 0.8630 0.0145 1.0207 
S133 0 647 -0.337 0.001 -0.3359 0.0212 1.0427 
S134 0 651 -0.344 0.000 -0.3433 0.0079 1.0286 
S135 0 649 -0.021 0.000 -0.0211 0.0136 1.0374 
S136 0 649 -2.015 ****  0.020 -2.0391 0.0145 0.9448 
S137 0 641 -2.032 **** 0.055 -2.0569 0.0385 0.9667 
S138 0 646 0.216 0.000 0.2152 0.0245 1.0479 
S139 0 641 -0.310 0.001 -0.3089 0.0384 1.0618 
S140 0 635 -0.081 0.000 -0.0802 0.0576 1.0856 
S141 0 632 0.462 0.005 0.4610 0.0639 1.0878 
S142 0 633 -0.110 0.000 -0.1099 0.0627 1.0914 
S143 0 641 -1.571 *** 0.034 -1.5796 0.0392 1.0060 

Sum of Residuals = 0 
Sum of Squared Residuals (SSR) = 55.9765 
Predicted Residual Sum of Squared (PRESS) = 58.6176 

Figure 4.10 depicts the actual recorded values of lnQ84% versus what was 

predicted by the model. It gives an immediate visual impression of the model's 

performance. Ideally, it should be a 45-degree straight line passing through 

the origin. This graphic is also useful in detecting outliers and gross errors in 

the model. The corresponding point for the outlier S81 can be seen on this plot. 
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Figtire 4.10. The actual versus predicted values of In Q84% (N = 134 obs.) 
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Figure 4.11 is a normal plot of residuals. The closer this plot is to a 

straight line, the more likely the residual assumption will hold. Again the 

effect of the outlier point S81, shown by a zero character, in distorting the 

straight hne can be visualized. 

For the time being there is no way to explain why the point belonging to 

station S81 (East Fork Hardin Creek near Churdan) is significantly different 

from the others, except that its location within the Des Moines lobe might be 

responsible for this abnormality. Nevertheless, it was removed and regression 

analysis was performed again with 133 observations to see how the absence of 

this point would affect the results. 

The new results after deletion of station SBl from the regression 

analysis are given in Table 4.12. 

Table 4.12. Analysis of variance and parameter estimates for In Qs4% (N = 133) 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Prob>F 

Model 2 736.16256 368.08128 1044.576 0.0001 
Error 130 45.80861 0.35237 
C Total 132 781.97116 

Root MSB 0.59361 R-square 0.9414 
Dep Mean 3.02747 Adj R-sg 0.9405 
C.V. 19.60752 

Parameter Estimates 

Parameter Standard T for HO: Veiriance 
Variable DF Estimate Error Pcirameter=0 Prob > |t1 Inflation 

INTERCEP 1 -9.034927 0.45982756 -19.649 0.0001 0.00000000 
In Qm 1 1.029314 0.03463698 29.717 0.0001 1.47726946 
In SDF 1 2.113237 0.18090478 11.681 0.0001 1.47726946 
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Figure 4.11. Normal plot of residuals for regression model (4.1) (N=134 obs.) 

In ^84% = -9-062 + 1.059 In + 2.059 In SDF 
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Comparison of Tables 4.8 and 4.11 shows that the removal of S81 as an 

outlier reduced the MSE to 0.352 and Sg to 0.59, and increased to 0.941. 

Furthermore, the new residual plots were improved (Figures 4.12 to 4.14). 

They appear to be more symmetrically distributed about the zero line. The 

PRESS is smaller (47.7 as compared to 58.6). The plot of actual versus 

predicted values for In ^34% appears to be more satisfactory (Figure 4.15), and 

the normal plot of residuals is more linear (Figure 4.16). 

The new model after deletion of S81 is: 

In Qm% = -9-035 + 1.029 hi + 2.113 hi SDF (4.2) 

Comparison between models (4.1) and (4.2) indicates the superiority of the 

latter. The new predicted values are given in Table 2 (in Appendix A). 

In order to check the validity of the model, 10% of the stations (S2, S12, 

S24, S28, 835, 847, 852, 858, 878, 897, 8106, 8129, and 8133) were deleted at 

random to be used subsequently as a new set of data, and regression analysis 

was repeated without them. The results of this stage appear in Table 4.13. 

Table 4.13. Analysis of variance and parameter estimates for In ^34% (N=120) 

Sum of Mean 
Source DF Squares Square F Value Prob>F 

Model 2 641.63583 320.81792 903.530 0.0001 
Error 117 41.54340 0.35507 
C Total 119 683.17923 

Root MSE 0, .59588 R-square 0. .9392 
Dep Mean 3, .23035 Adj R-sq 0. .9382 
C.V. 18, .44625 

Pcirameter Estimates 

Parameter Standard T for HO: Variance 
Variable DF Estimate Error Parameter=0 Prob > 1T( Inflation 

njTERCEP 1 -9.085690 0.48565692 -18.708 0.0001 0.00000000 
In Qm 1 1.019664 0.03864303 26.387 0.0001 1.54958683 
In SDF 1 2.155299 0.19488291 11.059 0.0001 1.54958683 
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Figure 4.12, Scatter plot of residuals versus predicted values of In Q84% by 

model (4.2), In ^84% = -9-035 + 1.029 In + 2.113 In SDF 
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Figure 4.16. Normal plot of residuals for regression model (4.2) 

hi Qs4% = -9.035 + 1.029 In + 2.113 In SDF (N = 133 obs,) 



www.manaraa.com

140 

Comparison of Table 4.13 with Table 4.12 indicates that the regression 

coefficients remain fairly stable subsequent to the removal of the 13 points. 

Small changes are in the direction of improvement. For example, the PRESS 

statistic is 43.49 (as compared to 47.73 for model 4,2). However, is slightly 

reduced to 0.939, and Sg increased by 0.002. The model for this step is: 

In Qu% = -9-086 + 1.020 In 2.155 In SDF (4.3) 

The results of this analysis are given in Table 3 (Appendix A) The dots 

in the second column of this table represent the deleted points. 

Figure 4.17 depicts the actual versus predicted values for regression 

model (4.3), which was bvdlt upon 120 observations. The residual plots of this 

model look satisfactory (not shown). The normal plot of these residuals in 

Figure 4.18 is a fairly straight line, confirming that the basic residual 

assumption holds. Table 4.14 shows the actual and predicted values for 13 

deleted stations which were left off deliberately. 

Restricted models With the two possible choices for restricted models of 

Q84%, two exponential models were tried consisting of either DA or DA and EL 

as independent variables. However, as was expected from Table 4.6, addition 

of EL as a second independent variable to the xmivariate model did not improve 

it significantly. ANOVA tables for both models (for N = 120) are given in Tables 

4.15 and 4.16 for comparison. As is evident from these tables, inclusion of EL 

increased by only 0.005 and reduced MSE by 0.023. Additionally, the T 

statistic for In EL and especially for the intercept became lower. Therefore, it 

was decided to stay with the model which contains only DA as the independent 

variable. The equation of this model is; 

In ^84% ~ -4.428 + 1.183 In DA (4.4) 
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Figure 4.17. Actual versus predicted values of In ^84% niodel (4.3), 
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Figure 4.18. Normal plot of residuals for regression model (4.3), 

In Q84% = -9.086 + 1.020 In Q^+ 2.155 In SDF (N = 120) 
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Table 4.14. Actual and predicted values by model (4,3) for 13 deleted 
observations 

In Q84% Q84% 
Assigned name 

Actual Predicted Actual Predicted 

S2 4.3041 3.9858 74.00 53.83 
S12 1.9459 2.3812 7.00 10.82 
S24 1.5261 1.4008 4.60 4.06 
S28 4.8598 4.5298 129.00 92.84 
S35 -2.1203 -2.6479 0.12 0.07 
S47 3.1355 3.8672 23.00 47.81 
S52 0.0100 -0.1583 1.01 0.85 
S58 1.4110 2.0709 4.10 7.93 
S78 -0.0513 1.1445 0.95 3.14 
S97 -0.3857 0.5562 0.68 1.74 
S106 0.6627 0.9220 1.94 2.51 
S129 -0.5798 -0.9745 0.56 0.38 
S133 0.2927 0.6353 1.34 1.89 

The results of this model may not be as precise as those of model (4.3), but it 

can be used as a quick reference to estimate ^84% which no 

records other than drainage area are available. 

Table 4 (Appendix A) presents the results of model (4.4) using the data 

set of N = 120 observations. PRESS for this model is 108.10, and Sg = 0.94 as 

opposed to 43.49 and 0.60 for model (4.3) respectively. The residual plots shown 

in Figures 4.19 and 4.19 are satisfactory. Figure 4.21 shows the actual versus 

predicted values by model (4.4), and Figure 4.22 depicts the normal plot of 

residuals. Finally, the actual versus predicted values for 13 deleted points are 

listed in Table 4.17. 

Table 4 (Appendix A), together with Figures 4.19 to 4.22, shows that 

model (4.4), despite its simple structure, has a fairly good predictive abihty and 

reasonable residual performance. 
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Table 4.15. Analysis of variance and parameter estimates for univariate 
model, lnQ84% = "4.428 + 1.183 In DA (N=120) 

Analysis of Variance 

Sum of Mean 
Source DF Squares Square F Value Prob>F 

Model 1 578.78042 578.78042 654, 00
 

0.0001 
Error 118 104.39881 0.88474 
C Total 119 683.17923 

Root MSB 0, .94060 R--square 0. .8472 
Dep Mean 3, .23035 Adj R-sq 0, .8459 
C.V. 29, .11769 

Parameter Estimates 

Parameter Standard T for HO: 
Variable DF Estimate Error Parameters0 Prob > |Tl 

INTERCEP 1 -4.427900 0.31148774 -14.215 0.0001 
In DA 1 1.182613 0.04623731 25.577 0.0001 

Table 4.15. Analysis of variance and parameter estimates for univariate 
model, lnQ84% = 0.710 + 1.161 In DA - 0,741 In EL (N=120) 

Analysis of Variance 

Source DF 
Sum of 
Squares 

Mean 
Square F Value Prob>F 

Model 
Error 
C Total 

2 
117 
119 

582.34412 
100.83511 
683.17923 

291.17206 
0.86184 

337.850 0.0001 

Root MSB 
Dep Mean 
C.V. 

0.92835 
3.23035 
28.73843 

R-square 
Adj R-sq 

0.8524 
0.8499 

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error 

T for HO: 
Parameter=0 Prob > IT) 

Variance 
Inflation 

INTERCEP 
In DA 
In EL 

0.709596 
1.161364 
-0.741328 

2.54510490 
0.04681619 
0.36456307 

0.279 
24.807 
-2.033 

0.7809 
0.0001 
0.0443 

0.00000000 
1.05243338 
1.05243338 
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Table 4.17. Actual and predicted values by model (4.4) for 13 randomly 
deleted observations 

In Q84% Q84% 
Assigned name 

Actual Predicted Actual predicted 

82 4.3041 3.0556 74.00 21.23 
812 1.9459 0.4395 7.00 1.55 
824 1.5261 1.2140 4.60 3.37 
S28 4.8598 4.8034 129.00 121.92 
835 -2.1203 -3.1526 0.12 0.04 
847 3.1355 2.4896 23.00 12,06 
852 0.0100 -0.9144 1.01 0.40 
858 1.4110 1.8614 4.10 6.43 
878 -0.0513 0.7543 0.95 2.13 
897 -0.3857 1.0759 0.68 2.93 
8106 0.6627 2.1841 1.94 8.88 
8129 -0.5798 -0.5748 0.56 0.56 
8133 0.2927 0.1818 1.34 1.20 

Models for 

General models The approach that has been discussed in detail for 

regressing = Q84% against different explanatory variables was repeated to 

reach the final decision regarding the most appropriate models for defining 

the magnitudes in terms of four possible explanatory variables. 

Table 4.18 gives the order of preference for explanatory variables to be 

included in the model. The most preferred variable is In Q^. Although the 

correlation matrix for ^2 = ^7,10 Table 4.7 shows a lower correlation 

coefficient between In and In Qy^io than in the case of In (0.86 as 

opposed to 0.94). Therefore, the models for In are anticipated to be less 

adequate. Table 4.7 also reveals that there are 25 observations with Qv^io = ^ 

which are automatically excluded from analysis. A small value of 0.0001 cfs 

was added to each points, but this addition made the model biased. Therefore, 

only 109 observations were included in the analysis. 
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Figure 4.19. Scatter plot of residuals versus predicted values for model (4.4), 

In Qq4% — -4.428 + 1.183 In DA 
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Figure 4.21 Scatter plot of the actual versus predicted values for model (4.4) 

In, Qg4% — -4.428 + 1.183 In DA 
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Figure 4.22. Normal plot of residuals for model (4.4), 

In Qs4% = -4.428 + 1.183 In DA 
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Table 4.18. R-square and Cp for possible models for In ̂ 7^10 (N = 109) 

Number of variables R-square Cp Variables in Model 
in the Model 

1 0. 74048938 102 .68978 In Qm 
1 0. 69746387 137 .12367 In DA 
1 0. 52250327 277 .14694 In SDF 
1 0. 11754458 601 .24074 In EL 

2 0. 86428635 5 .61343 In Qm In SDF 
2 0. 83476428 29 .24033 In DA In SDF 
2 0. 74351245 102 .27038 In DA In Qm 
2 0. 74049442 104 .68575 In EL In Qm 
2 0. 70832718 130 .42961 In DA In EL 
2 0. 56513726 245 .02640 In EL In SDF 

3 0. 86777447 4 .82184 In DA In Qm In SDF 
3 0. 86429359 7 .60763 In EL In Qm In SDF 
3 0. 84114147 26 .13658 In DA In EL In SDF 
3 0. 74545599 102 .71494 In DA In EL In Qm 

4 0. 87005088 5 .00000 In DA In EL In Qm In SDF 

Using subset selection procedures to screen variables, the first model for 

Q? 10 obtained by stepwise algorithm is 

In Q7,IO = -15.013 + 1.103 In + 3.397 In SDF (4.5) 

The backward elimination algorithm offers a model for this case which 

includes In DA as well. While comparison of R^, mean square error, and 

PRESS for this model and model (4.5) shows a slight improvement for the 

latter, the high variance inflation factors (VIF = 28.72 for In DA and 28.96 for 

In Qm) indicate the presence of multicollinearity. Therefore, it was not selected. 

Table 4.19 gives the ANOVA for model (4.5). J?2 for this model is 0.86, 

MSE = 1.03, F values are significant at the 0.0001 level, and VIF's are low 

(1.30), showing no signs of multicollinearity. However, examination of 

diagnostic measures indicates the presence of one significant outlier, 857 

(South Skunk River near Ames) with a high Cook's D = 0.148, Residual = -4.129 
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Table 4.19. Analysis of variance and parameter estimates for model (4.5) 
(N=109) 

Analysis of Variance 

Source DF 
Sum of 

Sqvicires 
Mean 

Square F Value Prob>F 

Model 2 695.31083 347.65542 337.528 0.0001 
Error 106 109.18045 1.03000 
C Total 108 804.49128 

Root MSB 1.01489 R-square 0.8643 
Dep Mean 1.99254 Adj R-sq 0.8617 
C.V. 50.93464 

Parameter Estimates 

Parameter Standard T for HO: Variance 
Variable DF Estimate Error Parameter=0 Prob > |T| Inflation 

INTERCEP 1 -15.013222 0.93463217 -16.063 0.0001 0.00000000 
In Qm 1 1.103243 0.06752344 16.339 0.0001 1.30213219 
In SDF 1 3.397451 0.34550717 9.833 0.0001 1.30213219 

and Rstudent = -4.4757. Other diagnostic measures also have high values 

corresponding to S57. Residual plots of this model also point to S57 as an 

outlier. It is important to notice that S57 is also located within Des Moines lobe 

as is the case for the first outlier, S81—a fact that confirms the impact of 

geology on low flow. A second point, belonging to station S123 (Mosquito Creek 

near Earling), has a relatively high Cook's D value = 0.096 and Student 

residual = -2.456; but since this point is within three standard deviations firom 

the zero line, it is not as far off as the first one. 

Only station S57 was therefore removed, and regression analysis was 

rerun without it. The resulting model that evolved from the rest of the data is 

In Q7,IO = -14.479 + 1.106 In + 3.230 hi SDF (4.6) 

The ANOVA for this model is given in Table 4.20. 

As is evident from this table, deletion of S57 reduced the MSE (from 1.03 

to 0.87) and slightly increased (from 0.86 to 0.88). Furthermore, Sg was 
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Table 4,20. Analysis of variance and parameter estimates for model (4.6) 

(N=108) 

Analysis of Variance 

Source DF 
Sinn of 
Squares 

Mean 
Square F Value Prob>F 

Model 2 668.87049 334.43524 382.991 0.0001 
Error 105 91.68800 0.87322 
C Total 107 760.55849 

Root MSB 0.93446 R-sc[uare 0.8794 
Dep Mean 2.05363 Adj R-sg 0.8772 
C.V. 45.50302 

Parameter Estimates 

Parameter Standard T for HO: Variance 
Variable DF Estimate Error Parameter=0 Prob > |T| Inflation 

INTERCEP 1 -14.479308 0.86879204 -16.666 0.0001 0.00000000 
In Qm 1 1.105672 0.06217463 17.783 0.0001 1.29842588 
In SDF 1 3.230440 0.32030698 10.085 0.0001 1.29842588 

reduced from 1.01 to 0.93, the PRESS was reduced from 115.10 to 96.79, and the 

appearance of the residual plots was improved. As a word of caution, 

regression models are not expected to be good predictors outside the region in 

which the data fall. Thus, model (4.6) should not be used to predict a value for 

any of the 25 deleted points since they fall outside the range of the data. The 

results of the model after removal of the outlier are listed in Table 5 

(Appendix A). 

Figures 4.23 and 4.24 are residual plots for models (4.5) and (4.6). 

Considerable improvement can be seen in Figure 4.24 in terms of residuals 

distribution. Also, the actual versus predicted values of In both before 

and after deletion of the outlier are given in Figures 4.25 and 4.26 for 

comparison. The outlier point has been plotted with a zero character (0). 

Figure 4.27 gives the normal plot of residuals for model (4.6). 
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Figure 4.23. Scatter plot of residuals versus predicted values for model (4.5) 

In Q7,IO = -15.013 +1.103 In + 3.397 In SDF (N = 109) 
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Figure 4.25. Actual versus predicted values for model (4.5), 

In Q710 = -15.013 + 1.103 In + 3.397 In SDF (N = 109) 
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Legend: A = 1 obs., B = 2 obs., etc. 
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Figure 4.27. Normal plot of residuals for model (4.6), 

In Q710 = -14.479 + 1.106 In + 3.230 In SDF (N = 108) 
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Again, similar to the case of the general model for ^84%, 13 observations 

(S2, S12, S24, S28, S36, S47, S54, S61, S79, S98, S108, S130, and S135) were deleted 

from the regression analysis to be used later for cross validation of the model 

for Q7_IO. This set is not quite the same as the previous 13 points, since 8 points 

which had ^7^10 = 0 were replaced. The model for this case is given below. 

In QT.IO = -14.483 +1.076 hi + 3.310 hi SDF (4.7) 

The for this model is 0.88, MSE = 0.87, Sg = 0.93, and PRESS = 84.99. The 

ANOVA is shown in Table 4.21. 

Table 4.21. Analysis of variance and parameter estimates for model (4.7) 

Analysis of Variance 

Source DF 
Sum of 
Squares 

Mean 
Square F Value Prob>F 

Model 2 602.90250 301.45125 348.279 0.0001 
Error 92 79.63010 0.86554 
C Total 94 582.53259 

Root MSE 0.93035 R-square 0.8833 
Dep Mean 2.24173 Adj R-sq 0.8808 
C.V. 41.50123 

Parameter Estimates 

Parameter Standard T for HO: Variance 
Variable DF Estimate Error Parameter=0 Prob > |T| Inflation 

INTERCEP 1 -14.483112 0.93437823 -15.500 0.0001 0.00000000 
In Qm 1 1.075897 0.06518298 16.506 0.0001 1.33701093 
In SDF 1 3.309947 0.34755217 9.524 0.0001 1.33701093 

Table 6 (Appendix A) presents the results generated by model (4.7). 

Comparison of the residual plots with and without the 13 points shows 

no considerable change on their pattern; they are satisfactory in both cases. 

Table 4.22 lists the actual values and those predicted by model (4.7) for 

the 13 deleted points. 
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Table 4.22. Actual and predicted values by model (4.7) for 13 deleted points 

In Q7,10 Q7,10 
Assigned name 

Actual Predicted Actual predicted 

S2 3.3673 2.7421 29.00 14.56 
812 1.0296 1.2626 2.80 3.22 
824 -0.9416 -0.4898 0.39 0.56 
828 3.8067 2.9706 45.00 18.67 
836 -1.6094 -0.3412 0.20 0.71 
847 1.6094 2.8151 5.00 16.69 
854 -0.8210 0.7839 0.44 2.19 
861 2.3979 4.0458 11.00 57.15 
879 0.5878 1.4652 1.80 4.33 
S98 -3.2189 -2.6002 0.04 0.07 
8108 1.0296 1.8722 2.80 6.50 
8130 2.1518 1.1294 8.60 3.09 
8135 -0.5621 -0.3772 0.57 0.68 

Restricted models Two models with the restriction of employing either 

DA or DA and EL as explanatory variables were calculated and tested for 

accuracy and predictive ability. It was foxmd that the univariate model which 

includes only DA explains 71.8% of variability among Q7^io data, with MSE = 

2.02, high F = 269.60, significant at the 0.0001 level, and PRESS = 222.94. This 

model developed after deletion of station S57 as an outlier. It has the following 

mathematical equation: 

In Qrj^io = -6.587 + 1.282 hi DA (4.8) 

The model, as its = 0.72 implies, is not as accurate as model (4.6). However, 

it can be used for sites without any hydrologic data to obtain first estimations 

for 

The ANOVA for this model is given in Table 4.23 The results of this 

model are listed in Table 7 (Appendix A). Figure 4.28 shows the predictive 

abihty, and Figure 4.29 gives the normal plot of residuals of the model. 
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Table 4.23. Analysis of variance and parameter estimates for model (4.8) 
(N=108) 

Analysis of Variance 

Sirai of Mean 
Source DF Squares Square F Value Prob>F 

Model 
Error 
C Total 

1 545.91956 545.91956 
106 214.63893 2.02490 
107 760.55849 

269.604 0.0001 

Root MSE 
Dep Mean 
C.V. 

1.42299 R-square 
2.05363 Adj R-sq 

69.29149 

Parameter Estimates 

0.7178 
0.7151 

variable DF 
Parameter Standard T for HO: 
Estimate Error Parameter=0 Prob > |T| 

INTERCEP 1 -6.587120 0.54376755 -12.114 0.0001 
In DA 1 1.282263 0.07809336 16.420 0.0001 

The second model, which includes both DA and EL, has a slightly larger 

of 0.729 and a smaller MSE of 1.96, but at the expense of instability in 

estimated parameters in terms of their significance levels. Therefore, it was 

not considered as an alternative. 

Comparison of the results from the two restricted models (univariate 

and bivariate), for Qg4% with the two corresponding models for Qv^io reveals 

that elevation (EL) is not a sensitive explanatory variable to define the 

variations among the data for §34% ^7,10- This conclusion is also 

confirmed from the calculated correlation matrix Tables. The correlation 

coefficients between both low flow indices and elevation, in logarithmic scale, 

are fairly low (-0.27 and -0.34 respectively, in Table 4.6 and Table 4.7). 
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Discussion 

Excluded stations 

As mentioned earlier nine stations were excluded from further analysis 

after being initially tested, either because the data were not available (for S57, 

S121, and S125) or the number of available linear segments was not sufficient 

to define a reliable master recession curve. 

The hydrologic data for these stations are listed in Table 4.24, and their 

geographic distribution is shown in Figure 4.30. 

Table 4.24 Hydrologic data for the nine excluded stations 

ID Descriptive Assigned Drainage area elevation Period of 
niainber name name (sq miles) (ft above NGVD) record 

05418500 Maquoketa R. near Maquoketa S14 1553 625. .96 75 
05464133 Half Mile Or. near Gladbrook S51 1. ,33 948. .16 10 
05476500 Des Moines R. at Estherville S68 1372 1247. .55 37 
05481650 Des Moines R. near Saylorville S75 5841 787. .42 -

06484000 Dry Creek at Hawardin S102 48. .4 1170. ,42 25 
06610000 Missouri River at Omaha S121 322800 948. .24 -

06610500 Indian Creek at Council Bluffs S122 7. .99 1038, .86 22 
06807000 Missouri R. at N^raska City S125 410000 905, .36 -

06808000 Mule Creek near Malvern S127 10. ,6 874, .20 15 

The following information is obtained from Table 4.24 and Figiire 4.30: 

1. The first four stations are located in the Mississippi basin, and the last 

five are situated along the western border of the state in the Missouri 

River basin, where the geology and soils are significantly different from 

the Mississippi River basin. 

2. Four stations, S51, S102, S122, and S127 have small drainage areas (less 

than 50 sq miles). This can be the cause of instability in recession 

periods. 
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Figure 4.30. Location of the nine stations excluded from the analysis 
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3. Even if data had been available for stations S121 and S125, these two 

would have been excluded because they are located at downstream 

points on the Missouri River in the southwest corner of the state; 

therefore, the effects of all regulations due to the construction of different 

main-stem reservoirs have eventually been transferred to these points. 

4. The abnormality observed in station S14 is due to bedrock aquifer 

discharge, as is evident by the presence of springs. 

5. Station S68 is situated in the Des Moines lobe, which is known as poor 

natural drainage region. 

6. Station S75 is affected by Saylorville Dam. Also, the data from pre-

regvQation period were not available. 

Studv of outliers 

In modeling ^34%, station S81 (East Fork Hardin Creek near Churdan) 

was detected by the regression model to be a definite outlier. The actual value 

for Q84% this station is 0.02 cfs, whereas the model prediction is 0.46 cfs. 

Also, the regression model for Q7 10 regarded station S57 (South Skunk River 

near Ames) as an outlier. The actual value for ^7^10 at this site is 0,01 cfs, but 

the model predicts a value of 0.62 for it. Both values are overestimated by the 

models. Obviously, one or more factors must be responsible for keeping the low 

flow indices at these two stations lower than expected. 

In an attempt to find possible reason(s) for this abnormality, some 

similarities were found between S81 and S57 as follows: 

1. Both are the first stations on their respective streams (no previous 

upstream stations exist), where there is usually more variability than 
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the downstream stations. At these upland locations, the alluvial 

aquifers do not contribute significantly to the base flow. 

2. Both have the same soil permeability index of I = 3.4 according to Howe 

(1968). 

3. Both are located within the Des Moines lobe (Region II in Figure 1.3), 

with depressional watersheds. Significant artificial drainage, which is 

in operation especially within the Hardin Creek watershed, reduces 

base flow contribution. 

Based on these remarks, it seems plausible to conclude that the geology 

of their drainage areas can accoimt for these low values of ^34% and The 

locations of these two stations are indicated in Figure 1.3 by stars. 

Variability of low flow indices 

The data of Fischer et al. (1990) show that in all stations the mean 

annual streamflow is exceeded between 20 to 30% of the time. It means the 

discharge is below average 70 to 80% of the time, which indicates high 

variability. 

The variation in low flow indices of Iowa streams is also substantial. 

The Iowa regulated protected low flow (^84%) ranges from 0,00 

for S81 to 0.31 for S13 csm (cubic feet per second per square mile), and the 7-day 

10-year low flow ($7^10) varies between 0.00 (for 25 stations) and 0.16 for S13 csm 

in magnitude (one csm = 111/sec per square kilometer). Although the low flow 

indices (^84% ^7,10^ Table 4.25 have been standardized by dividing by the 

drainage area (DA) of each stream, those streams with larger drainage areas 

still exhibit higher values for ^84%/ ®A) and (DA). As the drainage area 

increases the extent and storage volume of alluvial aquifer usually increases. 
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Table 4.25. Low flow indices at some stations with different drainage eireas 

Assigned name^ Drainage area(A) Q84%/A Q7,10/A 
sg mile csm csm 

S4 42 0.068 0.035 
S36 201 0.009 0.001 
S50 13.78 0.047 0.005 
S60 276 0.029 0.003 
S6 67500 0.217 0.134 
S15 85600 0.246 0.118 
S67 119000 0.220 0.101 

^ For ID numbers and site description, refer to Table 1 in Appendix A 

Inspection of the data presented in Table 4.1 also reveals that there are 

24 stations with small drainage areas (DA < 100 square miles). All these 

stations exhibit lower low flow magnitudes compared to the others regardless 

of location, indicating that the drainage area has a profound influence on low 

flow indices. This fact can be attributed to the increase in seepage area of the 

stream channel as the drainage area increases. 

There are two stations which are exceptions to this rule. Station S19 

(Crow Creek at Bettendorf with DA = 17.8 square miles has = 0.40 cfs), 

located near the Mississippi River in a glacial drift-free zone and bedrock-

controlled terrain. This zone is characterized by a sharply dissected landscape 

and steep valleys receiving the maximum precipitation in the state. The 

second station is S116 (Odebolt Creek near Arthur with DA = 39.9 square miles 

has = 0.39 cfs), situated in the Missouri basin. 

The inference regarding the effect of drainage area on the improvement 

of low flow characteristics is farther confirmed by moving along an individual 

stream channel and comparing the downstream stations having larger 

drainage areas with upstream stations in terms of discharge per unit 

drainage area (cfs per square mile, csm). Table 4.26 illustrates such a 
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comparison for stations in the Skunk River basin in central Iowa. The Table 

shows that as one moves in the downstream direction along the Skunk River 

channel, both low flow indices tend to increase. This fact is due to the presence 

of more alluvial deposits and, therefore, more base flow contribution in 

lowland areas. As streams slow down in the lowlands, their suspended solids 

are gradually deposited, providing more potential for groundwater storage. 

Furthermore, the water table in lowlands is usually closer to the surface. 

Table 4.26. Comparison of low flow indices in the Skunk River basin 

Assigned name^ Drainage area(A) Q84%/A Q7,10/A 
sq mile CSItl CSItl 

S57 315 0.014 0.000 
362 730 0.039 0.004 
861 1635 0.046 0.007 
863 2890 0.0528 0.0077 
866 4303 0.0534 0.0080 

^ For ID numbers refer to Table 1 in Appendix A 

There are stations, however, whose low flow indices are not consistent 

with the size of drainage area (see Table 4.27). In other words, with almost the 

same size of drainage area, their low flow indices vary by a factor of 4. One 

station, S39, has a smaller drainage area than the others in Table 4.27 while it 

has higher low flow indices. This discrepancy may be attributed to the 

differences between surficial soil types and the characteristics of aquifers 

contributing base flow to these streams in terms of transmissivity and storage 

coefficient. A more detailed geological study of these sites is probably 

justifiable. These gage locations are indicated by asterisks (*) on the map of 

Iowa (see Figure 1.1). 
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Table 4.27. Examples of stations with similar drainage areas but 
inconsistent low flow indices. 

Assigned naitie^ Drainage area Q84% Q7,10 
sq mile cf s cf s 

S23 1564 99.2 22 
S39 1054 185.6 96 
S41 1661 191.4 73 
S61 1635 76.0 11 
S80 1619 54.6 6.40 
S113 1548 68.8 9.10 

^ For ID numbers refer to Table 1 in Appendix A 

Topography is another major factor affecting low flow features. There 

are many stations in Table 4.1 which, in spite of their medium-sized drainage 

area (usually three-digit size; in one case—SlOl—^more than 1500 square 

miles), yield lower than expected low flow characteristics (Q84%/A = 0.015 csm; 

QT IQ/A = 0.001 csm). These stations are: S24, S29, S36, S54, S58, S60, S65, S71, 

S76, S88, S94, S97, S99, SlOl, S106, S107, Sill, S139, S140, S141, S142, and S143. 

Tracing these stations on a hydrologic map of Iowa, such as Figure 1.1, 

makes it clear that they are located on tributaries. Tributaries usually start 

from higher elevations in upland areas of the basin, where the slopes are 

steeper and the water table is relatively deeper. Therefore, they have poor low 

flow characteristics, compared with the downstream reaches. 

Re^onal trend in low flow 

Apart from the observed local variabilities that have already been 

discussed, a general trend of decreasing low flow indices can be observed as 

one moves from the northeast and east to the southwest and west, in the same 

direction as annual precipitation decreases across the state. 
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Streams located in the northeast and east have larger low flow indices 

compared to the rest and can be viewed as well-sustained streams. More 

aquifer recharge due to higher precipitation, existence of deeply incised, 

narrow valleys which can possibly augment the seepage area, lack of glacial 

material, presence of surficial alluvium, and karst formations are known 

factors responsible for high low flow indices. Moving to the southwest and 

west, the dry-weather streamflow gradually lessens. Significant drops in low 

flow indices are observed for gaging stations located within the Des Moines 

lobe (S20, S21, S57, S58, S59, 871, S78, and S81, to give some examples). The 

streams with the lowest low flow indices generally lie in the southwestern 

corner of the state, draining loess hills to the Missouri River. 
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The results of this investigation provide a new foundation to enhance 

our understanding about low flow characteristics of Iowa streams. 

Development of 134 pairs of master recession curves for 134 hydrologic 

gaging stations based on their available streamflow records would make it 

possible to characterize the recession behavior of each stream at different sites. 

They also help determine the general pattern of recession in the future days of 

a dry period given the present magnitude of streamflow. 

The master curves are supplemented by calculated values of median 

storage delay factors (SDF's) for each station. These values are believed to 

represent the collective influence of basin geology, extent and tjrpe of aquifer(s), 

and surficial soils on low flow characteristics. The calculated SDF's are 

between 8.3 days per log cycle for S141 (South Fork Chariton River near 

Promise City) and 43.8 days per log cycle for S67 (Mississippi River at Keokuk). 

Higher values for SDF imply gentle recession and therefore, more sustained 

low flow. 

Both master recession curves and storage delay factors are useful in 

setting stream management strategies in terms of water allocation for 

different uses and permit issuance during the low flow periods. 

The output of the second part of this research offers predictive models for 

low flow indices. Specifically, based on multiple regression analysis, three 

regression models have been proposed for estimation of Q84% (regulated 

protected flow). The mathematical expressions for these models are: 
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lnQ84% = -9-035 + 1.029 InQm + 2.113 In SDF 

with n = 133, adjusted R-squared = 0.941, and Sg = 0.594 

(5.1) 

hiQ84% = -9.086 + 1.020 InQm + 2.155 hi SDF 

with n = 120, adjusted R-squared = 0.938, and Sg = 0.596 and 

(5.2) 

lnQ84% = -4.428 + 1.183 In DA (5.3) 

with n = 120, adjusted R-squared = 0.846, and Sg = 0.941 

Models (5.1) and (5.2) include Qm (mean annual streamflow) and SDF 

(median storage delay factor) as explanatory variables; the former is an 

indirect measure of input to the shallow aquifers, and the latter, which 

represents the overall effect of geology and surficial soils of the drainage area, 

is an inverse measure for the rate of recession of base flow (output from the 

groundwater). 

Model (5.3) is a univariate model consisting of only DA (drainage area), 

proposed as a quick reference to estimate Q84% for those sites with no previous 

hydrologic data. The drainage area can be determined by topographic maps 

and aerial photographs. 

Likewise, three regression models have been developed for estimation of 

Q7,io (7-day, 10-ye£ir low flow). Equations for these models are: 

hiQ7,io = -14.479 + 1.106 InQm + 3.230 hi SDF 

with n = 108, adjusted R-squared = 0.877 and Sg = 0.934 

(5.4) 

InQv^io = -14.483 +1.076 InQm + 3.310 In SDF (5.5) 

with n = 95, adjusted R-squared = 0.881, and Sg = 0.930 and 



www.manaraa.com

173 

lnQ7,io = -6.587 + 1.282 In DA (5.6) 

with n = 108, adjusted R-squared = 0.715 and Sg = 1.42 

Again, model (5.6) is to be used for preliminary estimation of Qv.io at sites 

where no hydrologic records are available. 

In stimmary, based on the results of this investigation, the following 

conclusions can be drawn; 

1. The state-of-the-art mathematical modeling used in this study to develop 

master recession curves appears to be useful in extracting meaningful 

information from many individual recession segments which are 

otherwise difficult to use in practice. 

2. The developed master recession curves together with calculated storage 

delay factors can be used to predict the daily low flows during a dry 

period, 

3. Among the four explanatory variables initially used to develop 

regression models for Q84% and Qt^iq, the two most effective variables 

turned out to be mean annual precipitation (Qm), and storage delay 

factor (SDF). 

4. Attempts for modeling low flow characteristics using multiple 

regression techniques appear to be successful. The models for ^84% 

have a higher predictive ability than those for QT.IO, Although the same 

explanatory variables have been employed in both cases, the number of 

observations (n), for Qv^io models were smaller since 25 observations had 

a value of Qv.io = 0 and were excluded from analysis. 

5. Not only do regression methods provide reliable predictive models, but 

they can also be used as detectors for further investigation. Flagging a 
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certain point as an outlier justifies additional efforts focusing on that 

point, which can lead to valuable information. 

6. Exponential models are the best choices among other alternatives, for 

modeling low flow indices, although they cannot handle zero values. 

Recommendations 

In order to maintain a reasonable scope for the present investigation, 

the effects of some factors on low flow characteristics have not been studied. 

However, in similar studies performed on a smaller scale, where only several 

streams are encountered, the following areas are suggested to be emphasized: 

Basin geology 

A general knowledge of geology of the drainage areas is required to 

discover the nature, type, and extent of aquifer(s) contributing base flow to the 

streams, and to assist interpretation of some unusual observations on low flow 

characteristics in multiaquifer basins. 

Land use 

The impact of land use changes on low flow yields needs to be 

investigated. Controversy regarding the nature of hydrologic influence of 

forests and urbanization is evident in the current literature. This is partly 

because the yearly weather variability complicates the study of the effects of a 

specific change in land use on low flow characteristics and overshadows the 

comparison of low flow records before and after change. For this reason, it has 

even been recommended that experiments on land use changes be carried out 

in tropical areas, where the pattern of weather is more consistent and the 

growth of vegetation is fast. 
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The portions devoted to different modes of land use, such as forest, 

rangeland, cropland, urban, and industrial areas, need to be identified in each 

individual drainage basin from aerial photographs or appropriate maps. 

Also, the extent of lakes, swamps, and wetlands should be measured to 

identify any possible influence on low flow magnitudes and frequencies. 

Air temperature 

In cold regions, a knowledge of air temperature at sites is desirable to 

determine the magnitude and duration of subzero periods, during which the 

rate of base flow to the streams would be significantly decreased. Groundwater 

contribution can even cease under extremely cold conditions (Rogers and 

Armbruster, 1990) due to freezing of surface soil layers, even though the 

hydraulic gradient still exists. Conversely, an unusual warming period in the 

winter can cause unpredictable increases in baseflow input due to aquifer 

recharge. Access to the temperature records can be accomplished by 

installation of a thermograph at each site to depict temperature fluctuations. 

Precipitation 

Daily precipitation during the recession period is required to interpret 

any xmusual situation that is encoimtered. Frequently, a recession segment is 

found that has a constant baseflow for several days. This may occur due to 

runoff-producing precipitation (or snowmelt runoff) that is just enough to 

maintain a constant streamflow for some time, masking the regular decline in 

base flow. 

In terms of low flow modeling, considerable research remains to be 

conducted to improve the efficiency of the existing model and to develop a more 

vigorous conceptual basis for new models. 
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Table 1. List of Iowa gaging stations initially used in analysis 

ID Stream Assigned 
number gaging station name 

05387500 Upper Iowa River at Decorah SI 
05388000 Upper Iowa River near Decorah S2 
05388250 Upper Iowa River near Dorchester S3 
05388500 Paint Creek at Waterville S4 
05389000 Yellow River at Ion S5 
05389500 Mississippi River at McGregor S6 
05411600 Turkey River at Spillville S7 
05412000 Turkey River at Elkader SB 
05412500 Turkey River at Garber S9 
05414500 Little Maquoketa River near Durango SIO 
05417000 Maquoketa River near Manchester Sll 
05417700 Bear Creek near Monmouth S12 
05418450 North Fork Maquoketa River at Fulton S13 
05418500 Maquoketa River near Maquoketa S14 
05420500 Mississippi River at Clinton S15 
05420560 Wapsipinicon River near Elma S16 
05421000 Wapsipinicon River at Independence S17 
05422000 Wapsipinicon River near DeWitt S18 
05422470 Crow Creek at Bettendorf S19 
05448500 West Branch Iowa River near Kleitime S20 
05449000 East Branch Iowa River near Klemme S21 
05449500 Iowa River near Rowan S22 
05451500 Iowa River at Marshalltown S23 
05451700 Timber Creek near Marshalltown S24 
05451900 Richland Creek near Haven S25 
05452000 Salt Creek near Elberon S26 
05452200 Walnut Creek near Hartwick S27 
05452500 Iowa River near Belle Plaine S28 
05453000 Big Bear Creek at Ladora S29 
05453100 Iowa River at Marengo S30 
05454000 Rapid Creek near Iowa City S31 
05454300 Clear Creek near Coralville S32 
05454500 Iowa River at Iowa City S33 
05455000 Ralston Creek at Iowa City S34 
05455010 South Branch Ralston Creek at Iowa City S35 
05455100 Old Mans Creek near Iowa City S36 
05455500 English River at Kalona S37 
05455700 Iowa River near Lone Tree S38 
05457700 Cedar River at Charles City S39 
05458000 Little Cedar River near Ionia S40 
05458500 Cedar River at Janesville S41 
05458900 West Fork Cedar River at Finchford S42 
05459000 Shell Rock River near Northwood S43 
05459500 Winnebago River at Mason City S44 
05460500 Shell Rock River at Marble Rock S45 
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Table 1 continued 

ID Stream Assigned 
number gaging station name 

05462000 Shell Rock River at Shell Rock S46 
05463000 Beaver Creek at New Hartford S47 
05463500 Black Hawk Creek at Hudson S48 
05464000 Cedar River at Waterloo S49 
05464130 Fourmile Creek near Lincoln S50 
05464133 Half Mile Creek near Gladbrook S51 
05464137 Four Mile Creek near Traer S52 
05464500 Cedar River at Cedar Rapids S53 
05464640 Prairie Creek at Fairfax S54 
05465000 Cedar River near Conesville S55 
05465500 Iowa River at Wapello S56 
05470000 South Skunk River near Ames S57 
05470500 Squaw Creek at Ames S58 
05471000 South Skunk R. below Squaw Creek near Ames S59 
05471200 Indian Creek near Mingo S60 
05471500 South Sktink River near Oskaloosa S61 
05472500 North Sk\ink River near Sigoumey S62 
05473000 Skunk River at Coppock S63 
05473400 Cedar Creek near Oakland Mills S64 
05473500 Big Creek near Mount Pleasant S65 
05474000 Skunk River at Augusta S66 
05474500 Mississippi River at Keokuk S67 
05476500 Des Moines River at Estherville S68 
05476750 Des Moines River at Humboldt S69 
05479000 East Fork Des Moines River at Dakota City S70 
05480000 Lizard Creek near Clare S71 
05480500 Des Moines River at Fort Dodge S72 
05481000 Boone River near Webster City S73 
05481300 Des Moines River near Stratford S74 
05481650 Des Moines River near Saylorville S75 
05481950 Beaver Creek near Grimes S76 
05482000 Des Moines River at Des Moines S77 
05482170 Big Cedar Creek near Varina S78 
05482300 North Raccoon River near Sac City S79 
05482500 North Raccoon River near Jefferson S80 
05483000 East Fork Hardin Creek near Churdan S81 
05483600 Middle Raccoon River at Panora S82 
05484000 South Raccoon River at Redfield S83 
05484500 Raccoon River at van Meter S84 
05484800 Walnut Creek at Des Moines S85 
05485500 Des Moines R. below Racc. R. at Des Moines S86 
05485640 Fourmile Creek at Des Moines S87 
05486000 North River near Norwalk S88 
05486490 Middle River near Indianola S89 
05487470 South River near Ackworth S90 
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Table 1 continued 

ID Stream Assigned 
number gaging station name 

05487980 White Breast Creek near Dallas S91 
05488000 white Breast Creek near Knoxville S92 
05488500 Des Moines River near Tracy S93 
05489000 Cedar Creek near Bussey S94 
05489500 Des Moines River at Ottumwa S95 
05490500 Des Moines River at Keosauqua S96 
05491000 Sugar Creek near Keokuk S97 
05494300 Fox River at Bloomfield S98 
05494500 Fox River at Cantril S99 
06483270 Rock River at Rock Rapids SlOO 
06483500 Rock River near Rock valley SlOl 
06484000 Dry Creek at Hawarden S102 
06485500 Big Sioux River at Akron S103 
06486000 Missouri River at Sioux City S104 
06600000 Perry Creek at 38th Street, Sioux City S105 
06600100 Floyd River at Alton S106 
06600300 West Branch Floyd River near Struble S107 
06600500 Floyd River at James S108 
06602020 West Fork Ditch at Hornick S109 
06602400 Monona-Harrison Ditch near Turin SllO 
06605000 Ocheyedan River near Spencer Sill 
06605600 Little Sioux River at Gillett Grove S112 
06605850 Little Sioux River at Linn Grove S113 
06606600 Little Sioux River at Correctionville S114 
06606700 Little Sioux River near Kennebec S115 
06607000 Odebolt Creek near Arthur S116 
06607200 Maple River at Mapleton S117 
06607500 Little Sioux River near Turin S118 
06608500 Soldier River at Pisgah S119 
06609500 Boyer River at Logan S120 
06610000 Missouri River at Omaha, Nebraska S121 
06610500 Indian Creek at Council Bluffs S122 
06610520 Mosquito Creek near Earling S123 
06806000 Waubonsie Creek near Bartlett S124 
06807000 Missouri River at Nebraska City, Nebraska S125 
06807410 West Nishnabotna River at Hancock S126 
06808000 Mule Creek near Malvern S127 
06808500 West Nishnabotna River at Randolph S128 
06809000 Davids Creek near Hamlin S129 
06809210 East Nishnabotna River near Atlantic S130 
06809500 East Nishnabotna River at Red Oak S131 
06810000 Nishnabotna River above Hamburg S132 
06811840 Tarkio River at Stanton S133 
06817000 Nodaway River at Clarinda SI34 
06818750 Platte River near Diagonal S135 
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Table 1 continued 

ID Stream Assigned 
ntJinber gaging station name 

06819190 East Fork 102 River at Bedford S136 
06897950 Elk Creek near Decatur City S137 
06898000 Thompson River at Davis City S138 
06898400 Weldon River near Leon S139 
06903400 Chariton River Near Chariton S140 
06903700 South Fork Chariton R. near Promise City S141 
06903900 Chariton River near Rathbun S142 
06904000 Chariton River near Centerville S143 
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Table 2. Actual versus predicted values for response variable In Q84% = 133) 

Assigned Dep Var Predict Std Err Lower95% tJpper95% Lower95% l^per95% 
name In Q84% Value Predict Mean Mean Predict Predict Residual 

SI 4. 2905 3. 7689 0. 068 3. 6347 3. 9030 2. 5868 4. 9509 0. 5216 
S2 4. 3041 3. 9533 0. 077 3. 8009 4. 1057 2. 7691 5. 1375 0. 3508 
S3 5. 1533 4. 9551 0. 101 4. 7554 5. 1548 3. 7638 6. 1464 0. 1982 
S4 1. 0647 0. 3253 0. 122 0. 0844 0. 5662 -0. 8736 1. 5241 0. 7394 
S5 3. 4965 3. 4148 0. 118 3. 1805 3. 6491 2. 2172 4. 6123 0. 0818 
S6 9. 5929 9. 4852 0. 151 9. 1872 9. 7831 8. 2736 10. 6968 0. 1077 
S7 3. 1781 2. 7790 0. 084 2. 6125 2. 9455 1. 5929 3. 9652 0. 3990 
S8 4. 4188 3. ,4892 0. 059 3. 3729 3. 6055 2. 3091 4. 6694 0. 9296 
S9 5. 3327 4. ,8532 0. 066 4. 7223 4. 9841 3. 6716 6. 0349 0. 4795 
SIO 2. 8332 2. ,2172 0. 083 2. 0525 2. 3819 1. 0313 3. 4031 0. 6160 
311 3. 8286 2. ,8522 0. 054 2. ,7455 2. 9589 1. 6730 4. 0315 0. 9764 
312 1. 9459 2. ,3206 0. 152 2. ,0192 2. 6220 1. 1081 3. 5331 -0. 3747 
313 5. 0876 4. ,8443 0. 134 4. ,5792 5. 1094 3. 6403 6. 0483 0. 2433 
315 9. 9570 9. ,6668 0. 156 9. ,3576 9. 9759 8. ,4524 10. 8812 0. 2903 
S16 2. 1282 1. ,5469 0. 070 1. ,4090 1. ,6848 0. ,3644 2. 7294 0. 5813 
317 4. ,2341 3, ,7589 0. 062 3. ,6360 3. ,8819 2. ,5781 4. 9398 0. ,4752 
318 5. ,6937 5. ,4338 0. ,074 5. ,2877 5. ,5799 4. ,2504 6. ,6173 0. ,2599 
S19 0. ,9555 0. ,1454 0. ,116 -0. .0840 0. ,3749 -1. ,0512 1. ,3420 0. ,8101 
320 0. ,6678 1. .1884 0. ,093 1. .0034 1. ,3733 -0. .0005 2, ,3772 -0. ,5205 
321 1. ,6487 1. .3973 0. ,067 1. .2652 1, .5294 0, .2155 2. ,5791 0. ,2514 
322 3. ,1355 2. .8553 0. ,053 2. .7504 2. .9602 1. .6762 4. ,0344 0. ,2802 
323 4. ,5951 4. .1793 0. .064 4. .0536 4. .3049 2, .9982 5. ,3604 0. ,4159 
324 1. .5261 1. .3743 0. .063 1, .2488 1. .4997 0, .1932 2. ,5553 0. ,1518 
S25 0. ,7885 0. .8052 0. .082 0. .6434 0. .9669 -0, .3803 1. .9906 -0. .0167 
326 2. ,6247 2, .5405 0. .066 2, .4102 2. .6708 1, .3589 3. .7221 0. .0842 
327 0. .7885 0, .4299 0. .078 0, .2756 0. .5841 -0, .7546 1. .6144 0. .3586 
328 4, .8598 4, .5233 0. .072 4, .3818 4. .6648 3, .3404 5, .7062 0. .3365 
329 2, .0794 2, .8360 0. .089 2, .6608 3. .0113 1 .6486 4, .0234 -0. .7566 
S30 5. .6525 5, .4017 0. .075 5, .2538 5. .5496 4, .2180 6, .5854 0, .2508 
S31 -1, .2040 -0, .6682 0, .096 -0, .8586 -0, .4777 -1 .8579 0, .5216 -0. .5358 
S32 1, .4351 1 .2269 0, .065 1, .0977 1, .3560 0 .0454 2, .4084 0, .2082 
S33 5. .3845 5 .1716 0. .070 5 .0322 5, .3109 3 .9889 6, .3542 0, .2129 
334 -3, .5066 -3 .0596 0, .154 -3 .3644 -2, .7549 -4 .2729 -1, .8463 -0, .4469 
335 -2, .1203 -2 .6964 0, .145 -2 .9834 -2, .4094 -3 .9054 -1, .4875 0, .5762 
S3 6 0 .6313 1 .5940 0, .062 1 .4714 1, .7166 0 .4132 2, .7748 -0, .9627 
337 2 .9232 3 .0447 0. .061 2 .9235 3, .1660 1 .8641 4, .2254 -0 .1216 
S3 8 6 .2226 5 .9373 0, .086 5 .7671 6, .1074 4 .7506 7, .1239 0 .2853 
339 5 .2257 4 .6842 0, .070 4 .5463 4 .8220 3 .5017 5, .8666 0 .5416 
340 3 .2189 2 .6284 0, .055 2 .5205 2 .7362 1 .4490 3, .8077 0 .5905 
341 5 .2523 4 .2870 0, .063 4 .1618 4 .4122 3 .1060 5 .4681 0 .9653 
S42 4 .1431 3 .4647 0 .062 3 .3417 3 .5876 2 .2838 4 .6455 0 .6785 
343 3 .1355 2 .2382 0 .055 2 .1298 2 .3466 1 .0588 3 .4176 0 .8973 
344 3 .2958 2 .8511 0 .053 2 .7470 2 .9552 1 .6721 4 .0301 0 .4447 
345 4 .4188 3 .7358 0 .062 3 .6125 3 .8592 2 .5550 4 .9167 0 .6830 
346 5 .2364 4 .8054 0 .065 4 .6775 4 .9334 3 .6241 5 .9868 0 .4310 
347 3 .1355 3 .8216 0 .114 3 .5951 4 .0481 2 .6256 5 .0177 -0 .6861 
348 3 .0445 2 .1876 0 .058 2 .0737 2 .3016 1 .0077 3 .3675 0 .8569 
349 6 .5162 5 .9065 0 .087 5 .7347 6 .0782 4.7196 7 .0934 0 .6097 
350 -0 .4308 -0 .4030 0 .133 -0 .6656 -0 .1404 -1 .6064 0 .8004 -0 .0277 
352 0 .0100 -0 .2086 0 .119 -0 .4450 0 .0278 -1 .4065 0 .9893 0 .2186 
353 6 .7105 6 .2911 0 .089 6 .1148 6 .4673 5 .1035 7 .4786 0 .4195 
S54 2 .8332 2 .3894 0 .059 2 .2717 2 .5070 1 .2091 3 .5696 0 .4438 
855 7 .0596 7 .0997 0 .105 6 .8929 7 .3064 5 .9072 8 .2921 -0 .0400 
356 7 .1778 7 .1468 0 .104 6 .9413 7 .3522 5 .9545 8 .3390 0 .0310 
357 1 .5085 1 .7547 0 .076 1 .6049 1 .9045 0 .5708 2 .9386 -0 .2462 
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Table 2 continued 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95% 
name In Q84% Value Predict Mean Mean Predict Predict Residual 

S58 1. 4110 2. 0478 0. 056 1. 9375 2 .  1582 0. 8682 3. 2274 -0. 6368 
S59 1. 0578 2. 8637 0. 057 2. 7506 2. 9768 1. 6839 4. 0435 -1, 8059 
S60 2. 0794 2. 7896 0. 056 2. 6795 2. 8997 1. 6101 3. 9692 -0. 7102 
S61 4. 3307 5. 1483 0. 077 4. 9952 5. 3014 3. 9640 6. 3326 -0. 8176 
S62 3. 3322 3. 6927 0. 053 3. 5868 3. 7985 2. 5135 4. 8718 -0. 3605 
S63 5. 0304 5. 0194 0. 069 4. 8833 5. 1555 3. 8372 6. 2017 0. 0110 
S64 3. 0445 3. 0805 0. 060 2. 9610 3. 1999 1. 9000 4. 2609 -0. 0359 
S65 -0. 5108 0. 9171 0. 071 0. 7763 1. 0580 -0. 2657 2. 1000 -1. 4280 
S66 5. 4381 5. 2552 0. 093 5. 0705 5. 4399 4. 0664 6. 4440 0. 1829 
S67 10. 1720 10. 3213 0. 168 9. 9895 10. 6530 9. 1009 11. 5416 -0. 1493 
S69 4. ,5326 5. 4694 0. 097 5. 2772 5. 6616 4. ,2794 6. 6594 -0. 9368 
S70 3. 4340 3. 6505 0. 060 3. 5324 3. ,7686 2. ,4702 4. 8308 -0. ,2165 
S71 1. ,1184 1. ,3892 0. 066 1. 2592 1. ,5192 0. ,2076 2. 5708 -0. ,2708 
S72 4. ,8752 5. ,2981 0. 072 5. ,1555 5. ,4408 4. ,1151 6. 4811 -0. ,4229 
S73 3. ,1091 2. ,7319 0. 088 2. ,5573 2. ,9064 1. ,5446 3. ,9192 0. ,3772 
S74 5. .1591 6. ,0856 0. 090 5. ,9072 6. .2639 4. ,8977 7. ,2734 -0. ,9265 
S76 1. .5173 2. ,5984 0. ,053 2. ,4939 2, .7030 1. .4194 3. ,7775 -1. ,0811 
S77 5. .2095 5. .3318 0. 078 5. .1769 5. .4867 4. .1472 6. ,5163 -0. ,1223 
S78 -0. .0513 1, .1065 0, ,082 0. .9447 1. .2683 -0. .0790 2. ,2920 -1. .1578 
S79 3. .0445 3. .1665 0. ,056 3. .0565 3. .2765 1. .9870 4. ,3460 -0. .1220 
S80 4, .0073 4. .0924 0. ,061 3. .9710 4. .2139 2, .9118 5. .2731 -0. .0851 
S81 
S82 3. .4340 3. .4760 0. .092 3. .2940 3, .6579 2. .2875 4. .6644 -0. .0420 
S83 4, .2047 3. .9106 0. ,056 3. .7989 4, .0223 2, .7309 5. .0903 0. .2941 
S84 4, .9904 4. .9318 0. ,071 4. .7905 5, .0730 3. .7489 6. .1146 0. .0587 
S85 1. .4351 1. .0205 0. .068 0. .8866 1. .1544 -0. .1615 2. .2025 0. .4146 
S86 5. .9687 6. .9800 0, ,103 6, .7753 7, .1847 5, .7879 8. .1721 -1. .0113 
S87 1. .2179 1. .2842 0. ,064 1, .1574 1 .4109 0, .1030 2. .4654 -0, .0663 
S88 1. .4493 1. .6072 0. .096 1. .4180 1 .7964 0, .4177 2. .7967 -0, .1579 
S89 2. .4849 3. .0418 0. .052 2, .9395 3 .1441 1, .8630 4. .2207 -0, .5569 
S90 1. .5261 1. .5931 0. .124 1 .3472 1 .8389 0, .3932 2, .7929 -0, .0670 
S91 1. .4351 1, .8482 0. .087 1, .6751 2 .0212 0, .6611 3, .0352 -0 .4131 
S92 0. .7885 1. .9853 0. .076 1, .8355 2 .1351 0 .8014 3, .1692 -1, .1969 
S93 6. .2146 6, .3363 0. .094 6, .1496 6 .5230 5 .1471 7, .5254 -0 .1217 
S94 1. .4110 1, .9440 0, .086 1, .7737 2 .1142 0 .7573 3, .1306 -0 .5330 
S95 6 .  .3351 6, .4849 0. .097 6 .2925 6 .6772 5 .2948 7, .6749 -0 .1498 
S96 6 .  .4313 6, .4176 0. .102 6 .2159 6 .6193 5, .2260 7.6092 0 .0137 
S97 - 0 .  .3857 0, .5446 0. .093 0 .3610 0 .7282 -0 .6441 1 .7333 -0 .9303 
S98 -0, .4308 -0 .1129 0, .110 -0 .3314 0 .1056 -1 .3074 1 .0817 -0 .3179 
S99 0, .8755 0 .5880 0, .115 0 .3612 0 .8147 -0 .6081 1 .7841 0 .2875 
SlOO 2 .3795 2 .8021 0, .067 2 .6702 2 .9341 1 .6203 3 .9839 -0 .4226 
SlOl 3 .1527 2 .8886 0, .079 2 .7329 3 .0443 1 .7039 4 .0732 0 .2642 
S103 4 .4773 4 .7130 0, .064 4 .5863 4 .8397 3 .5318 5 .8942 -0 .2357 
S104 9 .2629 9 .3519 0. .148 9 .0598 9 .6440 8 .1417 10 .5621 -0 .0890 
S105 0 .0583 -0 .9030 0, .102 -1 .1044 -0 .7016 -2 .0945 0 .2886 0 .9612 
S106 0 .6627 0 .9040 0 .075 0 .7561 1 .0519 -0 .2797 2 .0877 -0 .2413 
S107 -0 .1054 0 .0079 0 .099 -0 .1884 0 .2042 -1 .1828 1 .1986 -0 .1133 
S108 2 .7600 3 .2601 0 .066 3 .1294 3 .3909 2 .0785 4 .4418 -0 .5001 
S109 3 .0445 2 .7304 0 .071 2 .5894 2 .8714 1 .5476 3 .9132 0 .3141 
SllO 3 .8712 3 .9906 0 .056 3 .8792 4 .1020 2 .8109 5 .1703 -0 .1194 
Sill 3 .3878 2 .7955 0 .053 2 .6912 2 .8997 1 .6165 3 .9745 0 .5923 
S112 3 .3673 3 .9564 0 .068 3 .8215 4 .0912 2 .7742 5 .1385 -0 .5891 
S113 4 .2341 5 .0434 0 .088 4 .8684 5 .2184 3 .8561 6 .2308 -0 .8093 
S114 4 .3307 4 .8260 0 .069 4 .6890 4 .9631 3 .6437 6 .0084 -0 .4953 
S115 4 .4308 4 .7450 0 .068 4 .6096 4 .8803 3 .5628 5 .9271 -0 .3141 
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Table 2 continued 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% I4)per95% 
name In Q84% Value Predict Mean Mean Predict Predict Residual 

S116 0.6831 0.3219 0.123 0 .0792 0. .5646 -0. .8773 1. .5212 0. .3612 
S117 3.6109 2.4038 0.073 2 .2591 2. .5486 1. .2206 3, .5871 1. .2071 
S118 5.2095 4.2872 0.099 4 .0907 4. .4837 3. .0965 5. ,4779 0. .9223 
S119 2.9957 2.7994 0.079 2 .6435 2. ,9553 1. .6147 3. ,9841 0. .1963 
S120 3.7612 3.5695 0.057 3 .4559 3, .6831 2, .3896 4. ,7494 0, .1917 
S123 -0.0305 -0.0826 0.101 -0 .2830 0. .1178 -1. .2740 1. ,1088 0. .0522 
S124 0.5068 -1.2621 0.107 -1 .4738 -1, .0503 -2. .4554 -0. ,0687 1, .7689 
S126 3.7136 3.2664 0.053 3 .1624 3. .3705 2, .0874 4. ,4454 0-.4472 
S128 4.6444 4.4179 0.066 4 .2873 4. .5485 3. .2363 5. ,5995 0, ,2265 
S129 -0.5798 -1.0109 0.105 -1 .2181 -0, .8037 -2, .2034 0. ,1817 0, .4311 
S130 3.2958 2.7889 0.052 2 .6866 2, .8913 1, .6101 3. ,9678 0 .5069 
S131 3.9318 4.1739 0.077 4 .0208 4. .3271 2 .  .9896 5. ,3583 -0, .2421 
S132 5.0499 4.4710 0.072 4 .3295 4. .6125 3, .2881 5. .6539 0 .5789 
S133 0.2927 0.5962 0.088 0 .4222 0. .7701 -0. .5911 1, .7834 -0 .3035 
S134 3.2189 3.4632 0.053 3 .3588 3, .5675 2, .2841 4. ,6422 -0 .2443 
S135 1.6094 1.6506 0.069 1 .5132 1, .7881 0 .4682 2, .8330 -0 .0412 
S136 -0.6162 0.7461 0.072 0 .6031 0, .8892 -0, .4370 1. ,9292 -1 .3623 
S137 -2.0402 -0.6888 0.117 -0 .9200 -0, .4577 -1, .8857 0, .5081 -1 .3514 
S138 2.6946 2.5479 0.093 2 .3639 2 .  .7320 1 .3592 3. .7367 0 .1467 
S139 -0.0408 0.1842 0.116 -0 .0461 0, .4146 -1, .0125 1, .3810 -0 .2251 
S140 0.3920 0.4472 0.142 0 .1654 0-.7290 -0 .7605 1. .6550 -0 .0552 
S141 0.6206 0.3302 0.150 0 .0333 0 .6270 -0 .8812 1 .5415 0 .2904 
S142 1.5041 1.5529 0.149 1 .2587 1, .8470 0 .3422 2, .7635 -0 .0488 
S143 1.0647 2.0581 0.118 1 .8255 2 .2907 0 .8609 3. .2553 -0 .9934 
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Table 3. Results of the regression analysis for model (4.3) (N=120) 

Assigned Dep Var Predict Std Err IiOwer95% Upper95% Lower95% ^pper95% 
name In Q84% Value Predict Mean Mean Predict Predict Residual 

SI 4. 2905 3. 7984 0. 074 3. 6523 3. 9446 2. 6093 4. 9876 0. 4920 
S2 .a 3. 9858 0. 084 3. 8194 4. 1522 2. 7940 5. 1776 
S3 5. 1533 4. ,9912 0. 109 4. 7760 5. 2063 3. 7916 6. 1908 0. 1621 
S4 1. 0647 0. ,3775 0. 140 0. 1002 0. 6547 -0. 8348 1. 5897 0. 6872 
S5 3. 4965 3. ,4629 0. 132 3. 2017 3. 7240 2. 2542 4. 6715 0. 0336 
S6 9. 5929 9. 4873 0. 158 9. 1752 9. 7994 8. 2666 10. 7080 0. 1056 
S7 3. 1781 2. 8179 0. 095 2. 6299 3. 0059 1. 6229 4. 0129 0. 3602 
S8 4. 4188 3. 5012 0. 060 3. 3817 3. 6208 2. 3151 4. 6874 0. 9176 
S9 5. 3327 4. ,8722 0. 068 4. 7371 5. 0072 3. 6843 6. 0600 0. 4606 
SIO 2. ,8332 2. ,2566 0. 095 2. 0686 2. 4445 1. 0616 3. 4515 0. 5767 
Sll 3. ,8286 2. ,8772 0. 059 2. ,7601 2. 9943 1. 6913 4. 0631 0. 9514 
S12 2. ,3812 0. ,171 2. ,0419 2. ,7205 1. 1533 3. ,6091 
S13 5. ,0876 4, ,8918 0. ,146 4. ,6026 5. ,1810 3. ,6768 6. ,1068 0. 1958 
S15 9. ,9570 9. .6637 0. ,164 9. .3383 9. ,9892 8. ,4396 10. ,8879 0. ,2933 
S16 2. ,1282 1.5801 0. ,080 1. .4219 1. ,7382 0. ,3894 2. ,7707 0. ,5482 
S17 4. ,2341 3. ,7691 0. ,064 3. ,6429 3. ,8953 2. ,5823 4, .9559 0, .4650 
S18 5. ,6937 5. .4497 0. ,076 5. ,2998 5. ,5996 4. ,2601 6, .6393 0. .2440 
S19 0. .9555 0. .1952 0. ,134 -0. ,0692 0. ,4596 -1. ,0142 1, .4046 0. ,7603 
S20 0. .6678 1. .2313 0. ,108 1. .0181 1. ,4445 0. ,0321 2, .4305 -0. ,5635 
S21 1. .6487 1. .4279 0. ,076 1, .2773 1. .5785 0. .2382 2. .6176 0. .2208 
S22 3. .1355 2, .8793 0. .058 2. .7648 2. .9939 1. .6937 4. .0650 0. .2562 
S23 4. .5951 4. .1893 0. .065 4. .0607 4. .3179 3. .0022 5. .3764 0. .4058 
S24 . 1, .4008 0. .071 1. .2601 1. .5416 0. .2124 2, .5893 . 
S25 0. .7885 0. .8420 0, .094 0, .6558 1. .0282 -0. .3527 2, .0367 -0. .0535 
S26 2. .6247 2, .5727 0. .074 2, .4253 2, .7201 1. .3834 3, .7620 0. .0520 
S27 0. .7885 0, .4528 0. .085 0. .2838 0. .6218 -0. .7394 1. .6449 0. .3357 
S28 , 4, .5298 0. .073 4. .3844 4. .6753 3. .3408 5. .7189 . 
S29 2, .0794 2, .8763 0. .100 2. .6786 3, .0739 1. .6797 4, .0728 -0. .7968 
S30 5, .6525 5 .4120 0, .077 5, .2604 5, .5635 4. .2222 6, .6018 0, .2405 
S31 -1 .2040 -0 .6363 0, .108 -0, .8497 -0, .4229 -1. .8356 0, .5629 -0, .5676 
S32 1 .4351 1 .2537 0, .073 1, .1088 1, .3987 0. .0648 2 .4427 0, .1813 
S33 5 .3845 5 .1837 0, .072 5, .0412 5, .3263 3, .9950 6 .3724 0, .2008 
S34 -3 .5066 -3 .0087 0, .174 -3 .3537 -2, .6637 -4, .2382 -1 .7792 -0, .4979 
S3 5 . -2 .6479 0. .164 -2, .9729 -2, .3229 -3. .8720 -1 .4239 
S3 6 0 .6313 1 .6140 0, .067 1, .4812 1, .7467 0. .4264 2 .8015 -0 .9827 
S37 2 .9232 3 .0560 0, .063 2, .9306 3, .1814 1, .8693 4 .2428 -0, .1329 
S3 8 6 .2226 5 .9433 0, .089 5 .7676 6, .1189 4. .7502 7 .1364 0, .2793 
S3 9 5 .2257 4 .7085 0 .073 4 .5635 4 .8534 3, .5195 5 .8975 0. .5173 
S40 3 .2189 2 .6539 0 .060 2 .5346 2 .7732 1 .4678 3 .8400 0 .5650 
S41 5 .2523 4 .2976 0 .065 4 .1696 4, .4257 3 .1106 5 .4847 0 .9546 
S42 4 .1431 3 .4748 0 .064 3 .3483 3 .6014 2 .2880 4 .6617 0 .6683 
S43 3 .1355 2 .2585 0 .059 2 .1415 2 .3755 1 .0726 3 .4444 0 .8770 
S44 3 .2958 2 .8691 0 .055 2 .7593 2 .9790 1 .6839 4 .0544 0 .4267 
S45 4 ,4188 3 .7459 0 .064 3 .6193 3 .8725 2 .5590 4 .9328 0 .6730 
S46 5 .2364 4 .8226 0 .066 4 .6911 4 .9540 3 .6352 6 .0100 0 .4139 
S47 3 .8672 0 .127 3 .6165 4 .1179 2 .6608 5 .0737 
S48 3 .0445 2 .2051 0 .061 2 .0839 2 .3263 1 .0188 3 .3914 0 .8394 
S49 6 .5162 5 .9115 0 .090 5 .7339 6 .0890 4 .7181 7 .1049 0 .6047 
S50 -0 .4308 -0 .3481 0 .153 -0 .6502 -0 .0461 -1 .5663 0 .8700 -0 .0826 
S52 -0 .1583 0 .138 -0 .4307 0 .1140 -1 .3695 1 .0528 
S53 6 .7105 6 .2996 0 .092 6 .1179 6 .4813 5 .1056 7 .4936 0 .4109 
S54 2 .8332 2 .4184 0 .067 2 .2858 2 .5509 1 .2308 3 .6059 0 .4148 
S55 7 .0596 7 .1149 0 .108 6 .9012 7 .3286 5 .9156 8 .3142 -0 .0553 
S56 7 .1778 7 .1562 0 .107 6 .9437 7 .3686 5 .9571 8 .3552 0 .0216 
S57 1 .5085 1 .7652 0 .079 1 .6080 1 .9224 0 .5746 2 .9557 -0 .2567 
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Table 3 continued 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% I4)per95% 
name In Q84% Value Predict Mean Mean Predict Predict Residual 

S58 2. 0709 0. 061 1. 9496 2. 1923 0. 8846 3. 2573 . 
S59 1. 0578 2. 8778 0. 059 2. 7601 2. 9955 1. 6918 4. 0637 -1. 8200 
S60 2. 0794 2. 8161 0. 062 2. 6942 2. 9379 1. 6297 4. 0025 -0. 7366 
S61 4. 3307 5. 1727 0. 081 5. 0124 5. 3330 3. 9818 6. 3637 -0. 8420 
S62 3. 3322 3. 7112 0. 056 3. 6011 3. 8214 2. 5260 4. 8965 -0. 3790 
S63 5. 0304 5. 0312 0. 070 4. 8920 5. 1703 3. 8429 6. 2195 -0. 0008 
S64 3. 0445 3. 0921 0. 062 2. 9687 3. 2156 1. 9056 4. 2787 -0. 0476 
S65 -0. 5108 0. 9381 0. 077 0. 7848 1. 0914 -0. 2519 2. 1281 -1. 4489 
S66 5. 4381 5. 2536 0. 098 5. 0605 5. 4467 4. 0578 6. 4494 0. 1845 
S67 10. 1720 10. 3229 0. 176 9. 9749 10. 6709 9. 0925 11. 5533 -0. 1509 
S69 4. 5326 5. 5007 0. 103 5. 2967 5. 7047 4. 3031 6. 6983 -0. 9681 
S70 3. 4340 3. 6620 0-061 3. 5408 3. 7832 2. 4757 4. 8483 -0. 2280 
S71 1. 1184 1. 4082 0. 071 1. 2680 1. 5485 0. 2198 2. 5967 -0. 2898 
S72 4. 8752 5. 3104 0. 074 5. 1644 5. 4564 4. 1213 6. 4995 -0. 4352 
S73 3. 1091 2. 7336 0. 092 2. 5513 2. 9160 1. 5395 3. 9278 0. 3754 
S74 5. 1591 6. 1069 0. 093 5. 9220 6. 2918 4. 9124 7. 3014 -0. 9479 
S76 1. ,5173 2. 6178 0. 056 2. ,5061 2. 7294 1. ,4324 3. ,8032 -1. ,1005 
S77 5. ,2095 5. 3381 0. 081 5. ,1786 5. ,4976 4. ,1473 6. ,5290 -0. .1286 
S78 . 1. ,1445 0. ,094 0, ,9579 1. ,3311 -0. ,0503 2. ,3392 . 
S79 3. ,0445 3. 1809 0. ,058 3. .0669 3. .2948 1. .9953 4. .3665 -0, .1363 
S80 
CQI 

4. ,0073 4. 1036 0. 063 3. ,9794 4. .2279 2. .9170 5. .2903 -0. .0963 
box 
S82 3. .4340 3. ,5156 0. ,102 3. .3132 3. .7180 2. .3183 4. .7130 -0.0816 
S83 4. .2047 3. ,9322 0. ,059 3. .8147 4. .0497 2. .7463 5. .1182 0. .2725 
S84 4. .9904 4. .9402 0. .073 4. .7954 5. .0850 3. .7512 6. .1291 0. .0503 
S85 1, .4351 1. .0454 0. .075 0, .8968 1. .1941 -0. .1440 2. .2349 0. .3897 
S86 5, .9687 6. .9971 0. .107 6, .7854 7. .2088 5. .7981 8. .1960 -1, .0284 
S87 1. .2179 1. .3086 0. .071 1, ,1680 1. .4492 0. .1201 2, .4971 -0, .0907 
S88 1, .4493 1. .6109 0. .100 1. .4126 1. .8093 0, .4143 2, .8076 -0, .1617 
S89 2, .4849 3. .0635 0. .055 2. .9537 3. .1732 1. .8783 4. .2487 -0 .5786 
S90 1, .5261 1. .5875 0. .131 1, .3286 1. .8465 0, .3793 2. .7957 -0, .0615 
S91 1 .4351 1. .8536 0. .091 1, .6724 2, .0347 0, .6596 3, .0475 -0. .4185 
S92 0 .7885 1, .9945 0. .079 1, .8378 2, .1512 0, .8040 3, .1850 -1 .2061 
S93 6 .2146 6, .3398 0, .098 6, .1461 6. .5336 5, .1439 7, .5357 -0 .1252 
S94 1 .4110 1. .9494 0, .090 1 .7713 2 .1276 0 .7559 3 .1429 -0 .5384 
S95 6 .3351 6. .4877 0 .101 6 .2878 6 .6877 5 .2908 7 .6847 -0 .1527 
S96 6 .4313 6, .4168 0, .106 6, .2059 6 .6276 5 .2180 7 .6156 0 .0146 
S97 , 0. .5562 0. .098 0 .3618 0. .7506 -0 .6398 1 .7522 
S98 -0 .4308 -0 .1036 0.117 -0 .3347 0 .1275 -1 .3061 1 .0989 -0 .3272 
S99 0 .8755 0 .5907 0 .120 0 .3521 0 .8293 -0 .6133 1 .7947 0 .2848 
SlOO 2 .3795 2 .8344 0 .075 2 .6860 2 .9828 1 .6450 4 .0238 -0 .4548 
SlOl 3 .1527 2 .8931 0 .082 2 .7312 3 .0551 1 .7020 4 .0843 0 .2596 
SX03 4 .4773 4 .7265 0 .065 4 .5970 4 .8560 3 .5393 5 .9137 -0 .2492 
S104 9 .2629 9 .3568 0 .154 9 .0516 9 .6620 8 .1379 10 .5758 -0 .0939 
S105 0 .0583 -0 .8778 0.111 -1 .0982 -0 .6573 -2 .0783 0 .3227 0 .9360 
S106 . 0 .9220 0 .080 0 .7630 1 .0810 -0 .2688 2 .1128 . 
S107 -0 .1054 0 .0213 0 .105 -0 .1874 0 .2300 -1 .1771 1 .2198 -0 .1267 
S108 2 .7600 3 .2910 0 .073 3 .1461 3 .4359 2 .1020 4 .4800 -0 .5310 
S109 3 .0445 2 .7647 0 .080 2 .6055 2 .9239 1 .5739 3 .9555 0 .2799 
SllO 3 .8712 4 .0109 0 .059 3 .8946 4 .1272 2 .8251 5 .1967 -0 .1397 
Sill 3 .3878 2 .8137 0 .056 2 .7035 2 .9238 1 .6284 3 .9989 0 .5741 
S112 3 .3673 3 .9852 0 .074 3 .8392 4 .1311 2 .7960 5 .1743 -0 .6179 
S113 4 .2341 5 .0741 0 .094 4 .8877 5 .2606 3 .8794 6 .2689 -0 .8400 
S114 4 .3307 4 .8486 0 .072 4 .7055 4 .9916 3 .6598 6 .0373 -0 .5178 
S115 4 .4308 4 .7678 0 .071 4 .6263 4 .9093 3 .5792 5 .9563 -0 .3370 
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Table 3 continued 

Assigned Dep Veir Predict Std Err Lower95% Upper95% Lower95% l^per95% 
name In 084% Value Predict Mecin Mean Predict Predict Residual 

S116 0. .6831 0. ,3744 0. ,141 0. ,0952 0. ,6537 -0. .8383 1. ,5871 0. ,3087 
S117 3. .6109 2. .4121 0. .076 2. ,2613 2, ,5629 1. .2224 3. 6019 1. ,1988 
S118 5, .2095 4. ,2827 0. .104 4. .0762 4. ,4893 3. .0847 5. 4808 0. ,9268 
S119 2, .9957 2. .8364 0, .089 2, .6604 3. ,0123 1. .6432 4. ,0295 0. ,1594 
S120 3, .7612 3. .5946 0, .062 3. .4722 3. .7170 2. .4081 4. ,7810 0. ,1666 
S123 -0, .0305 -0. .0399 0. .117 -0, .2707 0. .1909 -1. .2423 1. ,1626 0. ,0094 
S124 0. .5068 -1. .2309 0, .119 -1, .4661 -0. .9957 -2, .4343 -0. ,0276 1. ,7377 
S126 3. .7136 3. .2887 0. .056 3. .1773 3. .4001 2. .1033 4, .4741 0. ,4249 
S128 4. .6444 4.4424 0. .070 4. .3044 4, .5803 3. .2542 5. ,6305 0. ,2020 
S129 . -0. .9745 0, .118 -1. .2085 -0. .7404 -2, .1776 0. .2286 
S130 3, .2958 2. .8101 0, .056 2, .7000 2. .9203 1, .6249 3. .9954 0. .4857 
S131 3, .9318 4. .2055 0, .084 4, .0394 4. .3715 3, .0137 5. .3972 -0, .2737 
S132 5 .0499 4. .4774 0, .073 4, .3318 4, .6230 3, .2883 5, ,6665 0, .5725 
S133 0. .6353 0, .101 0, .4348 0, .8358 -0, .5617 1. .8323 
S134 3 .2189 3. .4842 0. .056 3, .3737 3. .5947 2. .2989 4. .6695 -0, .2653 
S135 1, .6094 1. .6647 0, .073 1, .5194 1, .8100 0, .4757 2. .8537 -0, .0553 
S136 -0 .6162 0, .7695 0, .079 0, .6121 0, .9269 -0. .4210 1. .9601 -1. ,3857 
S137 -2 .0402 -0, .6772 0, .124 -0, .9226 -0. .4319 -1 .8826 0. .5281 -1, .3630 
S138 2 .6946 2, .5487 0 .097 2, .3561 2 .7413 1 .3530 3, .7444 0, .1459 
S139 -0 .0408 0, .1889 0 .123 -0 .0538 0 .4316 -1 .0159 1, .3937 -0, .2297 
S140 0 .3920 0, .4414 0, .150 0 .1444 0 .7385 -0 .7755 1, .6583 -0 .0494 
S141 0 .6206 0, .3225 0 .158 0, .0094 0 .6357 -0 .8984 1, .5435 0 .2980 
S142 1 .5041 1, .5401 0 .157 1, .2289 1 .8514 0 .3197 2, .7606 -0, .0361 
S143 1 .0647 2, .0528 0 .124 1, .8078 2 .2978 0 .8475 3, .2581 -0, .9881 

a Dots refer to deleted points 
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Table 4. Results of the regression analysis for model (4.4) (N=120 obs.) 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% l^per95% 
name In Q84% Value Predict Mean Mean Predict Predict Residual 

SI 4, .2905 2. .9473 0. ,087 2. ,7759 3. ,1188 1. ,0768 4. ,8179 1. ,3431 
S2 .a. 3. .0556 0. ,086 2. ,8850 3. ,2262 1. ,1851 4. ,9261 . 
S3 5. .1533 3. .4322 0. ,086 3. ,2615 3. ,6030 1. ,5617 5. ,3027 1. ,7211 
S4 1. ,0647 0. .0146 0. ,152 -0. ,2869 0. ,3161 -1, ,8723 1. ,9015 1. ,0501 
S5 3. .4965 1. .9720 0. ,099 1. ,7760 2. ,1680 0, ,0990 3. .8449 1. ,5245 
S6 9. .5929 8. .7226 0. ,231 8. ,2646 9. ,1806 6. ,8045 10. ,6408 0. ,8703 
S7 3. .1781 1. .6935 0. ,105 1, ,4859 1. ,9010 -0. ,1807 3. .5677 1. ,4846 
S8 4. .4188 3. .6061 0. ,087 3, ,4336 3. ,7787 1. ,7355 5. ,4768 0. ,8127 
S9 5. .3327 4. .2558 0. ,095 4. ,0681 4. ,4434 2. ,3837 6. ,1279 1. ,0770 
SIO 2. .8332 1. .3285 0. ,114 1. ,1036 1. ,5534 -0. ,5477 3. ,2047 1. ,5047 
Sll 3, .8286 2. .3370 0. .093 2, ,1534 2. ,5206 0. ,4653 4, .2087 1. ,4916 
S12 0. .4395 0. ,139 0. .1645 0. ,7144 -1. .4434 2. .3223 , 
S13 5. .0876 2. .9588 0. ,087 2. ,7875 3, ,1302 1. .0883 4. .8294 2. ,1288 
S15 9. .9570 9. .0036 0. ,241 8, ,5253 9. ,4818 7. ,0805 10. .9266 0. ,9535 
S16 2. .1282 0. .9601 0. ,123 0. ,7155 1. ,2046 -0. ,9186 2. .8387 1. ,1682 
S17 4. .2341 3. .7967 0. ,089 3. .6211 3, ,9723 1. ,9258 5. .6677 0. ,4374 
S18 5. .6937 4. .7416 0. ,104 4. .5352 4, .9480 2. ,8676 6, .6157 0. ,9521 
S19 0. .9555 -1, .0229 0, .187 -1. .3935 -0. ,6523 -2. .9221 0, .8763 1. .9784 
S20 0. .6678 1, .2534 0, .116 1. .0246 1. .4822 -0. .6233 3. .1301 -0, .5856 
S21 1. .6487 1. .3555 0. .113 1. .1319 1. .5791 -0. .5205 3. .2315 0, .2932 
S22 3. .1355 2. .7405 0, ,088 2. .5662 2. .9147 0. .8697 4. .6113 0, .3950 
S23 4. .5951 4, .2702 0. ,095 4. .0821 4. .4584 2. .3981 6. .1424 0, .3249 
S24 , 1. .2140 0. ,117 0. .9831 1, ,4448 -0. .6629 3, .0909 , 

325 0. .7885 0, .3346 0. .142 0. .0533 0. .6160 -1. .5492 2. .2184 0. .4538 
S26 2. .6247 1. .8439 0. .102 1. .6428 2. .0449 -0. .0296 3. .7173 0. .7808 
S27 0. .7885 0. .6115 0. ,134 0, .3469 0. .8762 -1. .2698 2. .4929 0. .1769 
S28 . 4, .8034 0. .106 4. .5943 5. .0126 2. .9291 6. .6778 
S29 2. .0794 1. .7711 0. .103 1. .5669 1. .9752 -0. .1028 3. .6449 0. .3084 
S30 5. .6525 4. .9564 0. ,109 4. .7401 5, .1727 3. .0812 6, .8316 0. .6961 
S31 -1. .2040 -0. .6071 0. ,173 -0, .9494 -0. .2648 -2. .5010 1, .2868 -0. .5969 
S32 1. .4351 0. .9955 0. ,123 0. ,7530 1. .2381 -0. .8828 2. .8739 0. .4395 
S33 5. .3845 5. .1428 0. ,114 4. .9173 5. .3683 3. .2665 7. .0191 0, .2417 
S34 -3. .5066 -3, .1247 0. .263 -3. .6453 -2, .6041 -5. .0588 -1. .1907 -0. .3818 
S3 5 . -3, .1526 0. .264 -3. .6752 -2, .6299 -5. .0872 -1. .2180 , 
S36 0, .6313 1, .8439 0. .102 1. .6428 2, .0449 -0. .0296 3, .7173 -1. .2126 
S37 2. .9232 3, .0827 0. .086 2, .9123 3, .2532 1. .2123 4, .9532 -0. .1596 
S3 8 6. .2226 5. .4644 0. .122 5, .2218 5, .7069 3. .5860 7, .3427 0. .7582 
S3 9 5, .2257 3, .8035 0. .089 3. .6278 3. .9792 1. .9326 5, .6744 1, .4222 
S40 3, .2189 2, .3409 0. .093 2. .1574 2, .5243 0. .4692 4. .2126 0. .8780 
S41 5.2523 4, .3414 0. .096 4. .1508 4, .5319 2. .4690 6, .2138 0. .9109 
S42 4^ .1431 3, .5435 0. .087 3. .3718 3, .7153 1. .6730 5, .4141 0. .5996 
S43 3, .1355 2, .3175 0. .093 2, .1333 2 .5016 0, .4457 4, .1892 0. .8180 
S44 3, .2958 2, .9815 0. .086 2 .8104 3, .1527 1, .1110 4, .8520 0. .3143 
S45 4. .4188 4, .0786 0. .092 3, .8963 4, .2608 2 .2070 5, .9501 0. .3403 
S4e 5, .2364 4. .4004 0. .097 4, .2077 4, .5931 2, .5278 6, .2730 0, .8360 
S47 . 2, .4896 0. .091 2. .3101 2. .6690 0. .6183 4, .3609 . 
S48 3, .0445 2, .3292 0. .093 2. .1454 2, .5130 0, .4575 4, .2009 0. .7153 
S49 6, .5162 5, .6787 0. .129 5, .4240 5, .9333 3, .7987 7. .5587 0, .8375 
S50 -0 ,4308 -1 .3256 0, .198 -1 .7172 -0 .9341 -3 .2290 0 .5777 0 .8949 
S52 , -0 .9144 0, .183 -1 .2776 -0 .5513 -2 .8122 0 .9833 
S53 6.7105 5 .9567 0, .137 5 .6857 6 .2278 4 .0745 7 .8390 0 .7538 
S54 2 .8332 1 .7001 0 .105 1.4929 1, .9074 -0 .1740 3 .5743 1 .1331 
S5S 7 .0596 6, .1683 0. .143 5 .8843 6 .4523 4 .2841 8 .0525 0 .8914 
S56 7 .1778 6 .7282 0, .161 6 .4084 7 .0479 4 .8383 8 .6181 0 .4496 
S57 1 .5085 2 .3752 0, .092 2 .1927 2 .5576 0 .5036 4 .2468 -0.8667 
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Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95% 
name In Q84% Value Predict Mean Mean Predict Predict Residual 

S58 . 1. 8614 0. 101 1. ,6610 2. 0617 -0. 0120 3. 7348 
S59 1. ,0578 3. 0471 0. 086 2. ,8765 3. 2178 1. 1767 4. 9176 -1. 9893 
S50 2. ,0794 2. 2189 0. 095 2. ,0317 2. 4061 0. 3468 4. 0909 -0. 1394 
S51 4. .3307 4. 3227 0. 096 4. ,1328 4. 5126 2. 4504 6. 1950 0. 0080 
S62 3. 3322 3. 3691 0. 086 3. ,1987 3. 5395 1. 4987 5. 2396 -0. 0369 
S63 5. 0304 4. 9964 0. 110 4. ,7782 5. 2146 3. 1210 6. 8718 0. 0341 
S64 3. 0445 2. 9905 0. 086 2. 8194 3. 1615 1. 1200 4. 8610 0. 0540 
S65 -0. ,5108 1. 0871 0. 120 0. 8496 1. 3247 -0. 7906 2. 9649 -1. 5980 
S66 5. ,4381 5. ,4671 0. 123 5. ,2244 5. 7098 3, 5887 7. 3455 -0. 0290 
S67 10. ,1720 9. ,3932 0. 256 8. ,8866 9. 8997 7. 4628 11. 3235 0. 7788 
S69 4. ,5326 4. ,7035 0. ,103 4. ,4987 4. 9082 2. 8296 6. 5774 -0. 1709 
S70 3. ,4340 4. ,0588 0. ,092 3. ,8771 4. 2406 2. 1873 5. 9303 -0. 6248 
S71 1. ,1184 2. ,1345 0. ,096 1. ,9445 2. 3245 0. 2622 4. 0068 -1. ,0161 
S72 4. .8752 5. ,4356 0. ,122 5. .1947 5. ,6766 3. ,5574 7. ,3138 -0. ,5604 
S73 3. .1091 3. .5407 0. .087 3. .3690 3. ,7125 1. ,6702 5. ,4113 -0. ,4317 
S74 5. .1591 5. .7470 0. .131 5, .4884 6. ,0056 3. ,8665 7. ,6275 -0. .5879 
S76 1. .5173 2. .5265 0. .090 2, .3479 2. ,7051 0. ,6553 4, ,3977 -1. ,0092 
S77 5. .2095 5. .9076 0. .135 5. .6395 6. ,1757 4. ,0257 7. ,7895 -0. .6981 
S78 . 0. .7543 0. .129 0. .4981 1. ,0106 -1. ,1259 2. .6346 , 
S79 3. ,0445 3, .3195 0. .086 3. .1493 3. ,4897 1. ,4491 5. .1899 -0. .2750 
S80 4. ,0073 4. .3111 0. .096 4. .1216 4. ,5006 2. .4388 6. .1834 -0. .3038 
S81 
S82 3. .4340 2. .7704 0, .088 2. .5967 2. ,9441 0. .8996 4. .6411 0. .6636 
S83 4. .2047 3. .7342 0. .088 3. .5597 3. ,9086 1, ,8634 5. .6050 0. .4705 
S84 4. .9904 5. .2027 0. .115 4. .9742 5. ,4313 3. ,3261 7. .0794 -0. .2123 
S85 1. .4351 0, .7305 0. .130 0. .4728 0. .9881 -1. ,1499 2. .6108 0. .7046 
S86 5. .9687 6. .4500 0, .152 6 .  .1482 6. .7517 4. .5630 8. .3369 -0. .4813 
S87 1, .2179 0, .9286 0, .124 0 .  .6823 1. .1749 -0. .9503 2. .8075 0. .2893 
S88 1, .4493 2, .4964 0, .091 2, .3171 2. .6757 0. .6251 4. .3677 -1. .0471 
S89 2, .4849 2, .9287 0, .087 2, .7570 3. .1003 1. .0581 4, .7992 -0. .4437 
S90 1, .5261 2, .8230 0, .087 2, .6500 2. .9959 0. .9523 4, .6936 -1. .2969 
S91 1, .4351 2, .4724 0 .091 2, .2925 2. .6523 0. .6011 4, .3438 -1. .0373 
S92 0 .7885 2 .5970 0 .089 2, .4201 2. .7740 0. .7260 4, ,4681 -1, .8086 
S93 6 .2146 6, .7263 0 .161 6 .4066 7. .0459 4, .8364 8, ,6162 -0, ,5117 
S94 1, .4110 2, .5782 0 .090 2 .4008 2. .7556 0. .7071 4, ,4493 -1, ,1672 
S95 6. .3351 6, .8082 0 .164 6 .4832 7, .1332 4, .9174 8, ,6990 -0, ,4731 
S96 6. .4313 6, .8655 0 .166 6, .5367 7. .1943 4, .9740 8, ,7570 -0. ,4342 
S97 1 .0759 0 .120 0 .8377 1. .3141 -0, .8019 2 .9538 . 
S98 -0, .4308 0 .8630 0 .126 0 .6130 1. .1130 -1, .0164 2 .7424 -1 .2938 
S99 0 .8755 1 .5814 0 .107 1 .3688 1. .7941 -0, .2933 3, .4562 -0, .7060 
SlOO 2 .3795 3 .4595 0 .086 3 .2886 3, .6305 1, .5890 5. .3300 -1, .0800 
SlOl 3 .1527 4 .2912 0 .095 4 .1024 4, .4800 2, ,4190 6, .1634 -1, .1385 
S103 4 .4773 6 .0319 0 .139 5 .7563 6, .3075 4, .1489 7 .9148 -1 .5545 
S104 9 .2629 10 .5429 0 .299 9 .9517 11.1340 8 ,5886 12, .4971 -1 .2799 
S105 0 .0583 0 .5106 0 .137 0 .2399 0, ,7813 -1.3716 2 .3928 -0 .4523 
S106 . 2 .1841 0 .095 1 .9957 2 .3724 0 ,3119 4 .0562 . 
S107 -0 .1054 1 .7134 0 .104 1 .5067 1, .9200 -0 ,1607 3 .5875 -1 .8187 
S108 2 .7600 3 .5982 0 .087 3 .4258 3 .7706 1 .7275 5 .4688 -0 .8382 
S109 3 .0445 2 .6665 0 .089 2 .4910 2 .8421 0 .7956 4 .5374 0 .3780 
SllO 3 .8712 3 .6167 0 .087 3 .4441 3 .7893 1 .7461 5 .4874 0 .2545 
Sill 3 .3878 2 .7322 0 .088 2 .5578 2 .9065 0 .8614 4 .6030 0 .6556 
S112 3 .3673 4 .0821 0 .092 3 .8997 4 .2645 2 .2105 5 .9537 -0 .7148 
S113 4 .2341 4 .2581 0 .095 4 .0703 4 .4458 2 .3860 6 .1302 -0 .0240 
S114 4 .3307 4 .8249 0 .106 4 .6148 5 .0350 2 .9504 6 .6994 -0 .4942 
S115 4 .4308 4 .9325 0 .109 4 .7173 5 .1476 3 .0574 6 .8075 -0 .5016 
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Table 4 continued 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95% 
name In 084% Value Predict Mean Mean Predict Predict Residual 

S116 0. ,6831 -0, .0863 0. 156 -0. 3942 0. ,2217 -1. 9742 1. 8017 0. 7694 
S117 3. .6109 3. .2659 0. .086 3. ,0959 3. .4360 1. ,3955 5. 1363 0. 3450 
S118 5. ,2095 5, .2316 0. ,116 5. ,0015 5, .4616 3. ,3548 7. 1084 -0. 0221 
S119 2. .9957 2, .6782 0. ,089 2. ,5029 2, .8535 0. ,8073 4. 5491 0. ,3175 
S120 3. .7612 3, .5780 0. ,087 3. ,4058 3. .7501 1. ,7074 5. 4486 0. ,1832 
S123 -0. .0305 -0, .3293 0. ,164 -0. ,6531 -0. .0054 -2. ,2199 1. 5613 0. ,2988 
S124 0. .5068 -0, .3899 0, .166 -0. .7178 -0. .0621 -2. ,2812 1. 5014 0. ,8968 
S126 3. .7136 3.1548 0, .086 2. .9847 3. .3249 1, .2844 5. 0252 0. ,5588 
S128 4. .6444 4 .0750 0. .092 3. .8928 4, .2572 2, .2034 5. 9465 0. ,5694 
S129 . -0 .5748 0. .172 -0. .9150 -0, .2347 -2. .4683 1. ,3186 . 
S130 3. .2958 2 .7596 0, .088 2. .5857 2. .9335 0. .8888 4. ,6304 0. .5362 
S131 3, .9318 3 .6088 0, .087 3. .4362 3, .7813 1. .7382 5. ,4794 0. .3230 
S132 5. .0499 4 .9615 0, .109 4, .7450 5 .1780 3, .0863 6. ,8367 0, .0884 
S133 0 .1818 0. .147 -0, .1091 0 .4727 -1, .7034 2. ,0671 , 

S134 3. .2189 3 .4199 0, .086 3, .2492 3 .5905 1, .5494 5. .2903 -0, .2010 
S135 1. .6094 1 .9344 0, .100 1, .7370 2 .1319 0, .0613 3. .8075 -0, .3250 
S136 -0. .6162 0 .9209 0, .125 0. .6742 1 .1677 -0 .9580 2. .7998 -1, .5371 
S137 -2, .0402 0 .2562 0, .145 -0, .0300 0 .5425 -1 .6283 2. .1407 -2 .2964 
S138 2 .6946 3 .3212 0, .086 3, .1510 3 .4914 1 .4508 5, .1916 -0 .6266 
S139 -0 .0408 1 .0646 0 .121 0, .8258 1 .3034 -0 .8133 2, .9425 -1 .1054 
S140 0 .3920 1 .7264 0 .104 1 .5203 1 .9325 -0 .1476 3, .6005 -1 .3344 
S141 0 .6206 1 .6318 0 .106 1 .4215 1 .8421 -0 .2427 3, .5063 -1 .0112 
S142 1 .5041 3 .0321 0 .086 2 .8614 3 .2029 1 .1617 4. .9026 -1 .5281 
S143 1 .0647 3 .3329 0 .086 3 .1627 3 .5032 1 .4625 5, .2034 -2 .2682 

a Dots refer to deleted points 
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Table 5. Results of the regression model (4.6) (N=108) 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% tt)per95% 
xiame In Q7,X0 Value Predict Mean Mean Predict Predict Residual 

SI 3.5264 2. 3848 0.112 2. 1626 2. 6071 0.5187 4. 2510 1. 1415 
S2 3. 3673 2. 6555 0.127 2. 4034 2. 9075 0.7856 4. 5254 0. 7118 
S3 4. 4998 3. 9326 0.167 3. 6008 4. 2643 2.0502 5. 8149 0. 5672 
S4 0. 4055 -1. 4647 0.225 -1. 9119 -1. 0176 -3.3708 0. 4413 1. 8702 
S5 2. 9444 2. 2404 0.201 1. 8421 2. 6387 0.3452 4. 1356 0. 7040 
S6 9. 1072 8. 9308 0.266 8. 4031 9. 4585 7.0043 10. 8574 0. 1764 
S7 2. 1972 1. 3216 0.146 1. 0326 1. 6106 -0.5537 3. 1969 0. 8756 
S8 3. 2958 1. 7711 0.104 1. 5656 1. 9766 -0.0932 3. 6353 1. 5248 
S9 4. 4308 3. 5421 0.106 3. 3329 3. 7513 1.6774 5. 4068 0. 8887 
SIO 2. 0015 0. 6437 0.149 0. 3488 0. 9386 -1.2325 2. 5199 1. 3578 
Sll 3. 0445 1. 1953 0.098 1. 0009 1. 3897 -0.6678 3. 0583 1. 8492 
S12 1. 0296 1. 0998 0.263 0. 5788 1. 6207 -0.8249 3. 0245 -0. 0702 
S13 4. 4188 3. 9749 0.226 3. 5268 4. 4229 2.0686 5. 8811 0. 4440 
S15 9. 2203 9. 0726 0.276 8. 5251 9. 6200 7.1405 11. 0047 0. 1477 
S16 1. .3863 -0. .2695 0.136 -0. ,5394 0. 0004 -2.1419 1. 6029 1. 6558 
S17 2. .8904 2. ,0712 0.107 1. .8582 2. 2841 0.2061 3. 9362 0. ,8192 
S18 4. ,6347 4. .2030 0.119 3. ,9674 4. ,4386 2.3352 6. ,0708 0. .4318 
S19 -0. .9163 -1. ,7217 0.219 -2. ,1550 -1. ,2884 -3.6246 0. ,1812 0. ,8054 
S20 -1. .2040 -0. ,5554 0.174 -0. ,9011 -0. ,2098 -2.4403 1. ,3294 -0. ,6485 
S21 -0. ,2231 -0. ,4919 0.135 -0. ,7588 -0. ,2249 -2.3639 1. ,3802 0. ,2687 
S22 1. ,8083 1. ,1845 0.097 0. ,9924 1. ,3766 -0.6783 3, ,0473 0. ,6238 
S23 3. .0910 2. ,5827 0.106 2. ,3719 2. ,7935 0.7179 4, ,4475 0. ,5083 
824 -0. .9416 -0. .5825 0.132 -0. ,8436 -0. ,3213 -2.4537 1. ,2887 -0. ,3591 
S25 -1. .5606 -1. .1174 0.162 -1, ,4391 -0. ,7956 -2.9980 0. .7632 -0. ,4433 
826 1. .0647 0. .9279 0.119 0. .6925 1. .1633 -0.9399 2. .7957 0. .1368 
827 *a -1. .7916 0.167 -2. .1228 -1, ,4603 -3.6738 0. .0907 * 

828 3, .8067 2, .9474 0.119 2. .7110 3. .1838 1.0795 4. .8153 0. .8593 
829 -0, .5798 1, .4125 0.153 1. .1097 1. .7153 -0.4650 3. .2899 -1. .9923 
830 4, .3567 4, .0766 0.121 3, .8363 4, .3169 2.2082 5, .9450 0. .2801 
831 •k -2 .9922 0.204 -3, .3970 -2, .5873 -4.8888 -1, .0956 * 

S32 -0 .7550 -0 .7580 0.136 -1. .0283 -0, .4877 -2.6305 1. .1145 0.00297 
833 4 .0943 3 .8254 0.114 3 .6003 4, .0504 1.9589 5 .6919 0. .2690 
834 • -5 .6122 0.311 -6 .2286 -4, .9957 -7,5649 -3 .6594 • 
S35 • -5 .2071 0.294 -5 .7905 -4 .6238 -7.1497 -3 .2646 * 

S3 6 -1 .6094 -0 .4172 0.129 -0 .6735 -0 .1608 -2.2877 1 .4534 -1 .1923 
S37 0 .9163 1 .2176 0.113 0 .9937 1 .4415 -0.6488 3 .0839 -0 .3013 
S3 a 4 .9273 4 .6638 0.142 4 .3832 4 .9445 2.7898 6 .5379 0 .2634 
839 4 .5643 3 .4194 0.112 3 .1976 3 .6412 1.5533 5 .2855 1 .1449 
S40 1 .8718 0 .9312 0.102 0 .7297 1 .1327 -0.9326 2 .7950 0 .9406 
S41 4 .2905 2 .7224 0.105 2 .5142 2 .9306 0.8579 4 .5869 1 .5681 
842 2 .7726 1 .7128 0.110 1 .4943 1 .9313 -0.1529 3 .5785 1 .0598 
S43 1 .2528 0 .3736 0.109 0 .1565 0 .5907 -1.4920 2 .2391 0 .8792 
S44 1 .9879 1 .0856 0.099 0 .8899 1 .2814 -0.7776 2 .9488 0 .9022 
S45 3 .4012 2 .0412 0.108 1 .8271 2 .2553 0.1760 3 .9064 1 .3600 
846 4 .2341 3 .4560 0.103 3 .2513 3 .6606 1.5918 5 .3201 0 .7781 
847 1 .6094 2 .6978 0.193 2 .3153 3 .0803 0.8059 4 .5898 -1 .0884 
848 1 .1939 0 .2682 0.116 0 .0390 0 .4974 -1.5988 2 .1352 0 .9257 
849 5 .6870 4 .6107 0.143 4 .3270 4 .8945 2.7362 6 .4852 1 .0763 
850 -2 .6593 -2 .3109 0.249 -2 .8047 -1 .8170 -4.2284 -0 .3933 -0 .3484 
S52 * -2 .1453 0.227 -2 .5963 -1 .6943 -4.0523 -0 .2383 * 

S53 5 .8665 5 .1347 0.147 4 .8430 5 .4265 3.2590 7 .0104 0 .7317 
854 -0 .8210 0 .6934 0.111 0 .4729 0 .9139 -1.1726 2 .5594 -1 .5144 
S55 6 .2166 6 .2248 0.177 5 .8746 6 .5750 4.3391 8 .1105 -0 .0082 
856 6 .3190 6 .1916 0.175 5 .8440 6 .5392 4.3064 8 .0768 0 .1274 
857 - - - - - - - -
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Table 5 continued 

Assigned Dep Var Predict Std Err Lower95% llpper95% Lower95% Upper95% 
name In 07^10 Value Predict Mean Mean Predict Predict Residual 

S58 •k 0. 1855 0. 112 -0. 0375 0. 4084 -1. 6808 2. 0517 * 

S59 * 1. 0399 0. 107 0. 8269 1. 2529 -0. 8252 2. 9050 * 

S60 -0. 2357 1. 1419 0. 101 0. 9415 1. 3423 -0. 7218 3. 0056 -1. 3776 
S61 2. 3979 3. 9868 0. 125 3. 7390 4. 2347 2. 1175 5. 8562 -1. 5890 
S62 0. 9555 2. 1211 0. 090 1. 9424 2. 2998 0. 2596 3. 9826 -1. 1656 
S63 3. 1355 3. 6333 0. 111 3. 4132 3. 8533 1. 7674 5. 4992 -0. ,4978 
S64 0. 8755 1. 2672 0. 111 1. 0474 1. 4870 -0. 5987 3. 1331 -0. ,3917 
S65 * -1. 2273 0. 152 -1. 5277 -0. 9269 -3. 1043 0. 6498 •k 

S66 3. .4965 3. 7139 0. 157 3. 4033 4. 0244 1. 8352 5. 5926 -0. ,2174 
S67 9. ,3927 9. 9429 0. 300 9. 3484 10. 5374 7. 9970 11. 8888 -0. ,5502 
S69 3. .2581 4. 4850 0. 161 4. 1667 4. 8034 2. ,6050 6. 3651 -1. ,2269 
S70 2. ,2513 1. 9598 0. 104 1. 7542 2. 1655 0. ,0956 3. 8241 0, .2915 
S71 -2. ,2073 -0. 6810 0. 138 -0. 9544 -0. 4075 -2. ,5539 1. 1920 -1. .5263 
S72 3. ,6376 3. 9813 0. 116 3. 7507 4. ,2118 2. ,1141 5. 8484 -0. .3437 
S73 0. ,8329 0. 6882 0. 163 0. 3652 1. ,0111 -1. ,1927 2. ,5690 0. .1448 
S74 3. ,7136 5. ,0825 0. 149 4. 7879 5. ,3770 3. ,2063 6. ,9586 -1. .3689 
S76 • 0. ,7984 0. 102 0. ,5963 1. ,0005 -1. ,0655 2. ,6623 * 

S77 3. ,8067 3. ,9306 0. 128 3. ,6762 4. ,1850 2, .0603 5. ,8008 -0. ,1239 
S78 * -0. ,7326 0. 158 -1. ,0466 -0. ,4187 -2. .6119 1. ,1466 * 

S79 0. .5878 1. ,4139 0. ,101 1. ,2135 1. .6142 -0. .4498 3. ,2776 -0. ,8261 
S80 2. .2083 2. ,4943 0. ,103 2. ,2903 2. .6983 0. .6302 4. .3583 -0. ,2860 
S81 • -2. ,7934 0. ,221 -3. ,2322 -2. .3545 -4. .6975 -0. ,8892 * 

S82 2. .5649 2. ,1838 0. ,155 1. ,8764 2. .4911 0, .3056 4. .0620 0, ,3812 
S83 3. .2581 2. ,4338 0. ,092 2. .2505 2. .6172 0. .5719 4. .2958 0, .8243 
S84 3. .5553 3. ,4746 0. ,117 3. .2433 3. .7059 1. .6073 5. .3419 0, ,0807 
S85 * -1. .0394 0. ,143 -1. .3238 -0. ,7549 -2. ,9140 0. .8352 * 

S86 4. .5951 6. .1077 0. ,174 5. .7617 6. ,4536 4. ,2228 7. .9926 -1, .5125 
S87 * -0. .7258 0. ,135 -0. .9931 -0. ,4585 -2. ,5979 1. .1462 * 

S88 -3. .2189 -0. .6532 0. ,185 -1. .0209 -0. ,2854 -2. ,5422 1. .2359 -2, .5657 
S89 0. .4055 1. .3753 0. .093 1. .1902 1. ,5604 -0. ,4868 3. ,2374 -0 .9698 
S90 -0. .1985 -0. .8137 0. .233 -1. .2764 -0, ,3511 -2. ,7235 1. ,0960 0 .6153 
S91 -1. .0217 -0. .3328 0. .170 -0. .6693 0. ,0036 -2. ,2160 1. ,5503 -0. .6888 
S92 -0. .5798 -0. .1069 0. .149 -0. .4018 0. ,1880 -1, ,9831 1. ,7693 -0. .4729 
S93 4, .8040 5. ,1121 0. ,157 4. .8011 5, .4232 3, ,2333 6. ,9909 -0 .3081 
S94 -1. .2379 -0. .2152 0. .166 -0, .5452 0, .1149 -2, .0972 1, ,6669 -1 .0227 
S95 4, .8203 5, .2833 0. ,162 4, .9618 5, .6048 3, .4027 7, ,1639 -0 .4630 
S96 4, .9628 5, .1434 0. ,171 4. .8051 5, .4817 3, .2599 7, .0269 -0 .1806 
S97 • -1, .8269 0, ,191 -2, .2057 -1, .4481 -3, .7181 0, .0643 * 

S98 -3. .2189 -2, .6649 0, ,226 -3. ,1125 -2, .2173 -4 .5711 -0, .7587 -0 .5540 
S99 * -1, .9120 0, .226 -2. ,3602 -1, .4639 -3 .8183 -0, .0057 * 

SlOO 0 .4700 1 .2473 0, .117 1. ,0144 1 .4801 -0 .6202 3, .1147 -0 .7773 
SlOl 0 .5306 0 .9232 0 .145 0, .6355 1 .2109 -0 .9519 2, .7983 -0 .3926 
S103 2 .9444 3 .2873 0, .103 3, ,0827 3 .4919 1 .4232 5, .1515 -0 .3429 
S104 8 .2610 8 .8120 0 .261 8, .2952 9 .3289 6 .8884 10, .7357 -0 .5510 
S105 -3 .2189 -3 .3818 0 ,218 -3, .8133 -2 .9503 -5 .2843 -1 .4793 0 .1629 
S106 * -1 .2893 0 .158 -1, .6024 -0 .9761 -3 .1684 0 .5899 * 

S107 • -2 .4539 0 .206 -2, .8633 -2 .0445 -4 .3515 -0 .5563 * 

S108 1 .0296 1 .7841 0 .113 1 .5610 2 .0073 -0 .0821 3 .6504 -0 .7545 
S109 1 .3863 1 .1909 0 .125 0 .9424 1 .4394 -0 .6786 3 .0604 0 .1954 
SllO 2 .6391 2 .5113 0.092 2 .3291 2 .6936 0 .6495 4 .3731 0 .1277 
Sill • 1 .0206 0 .100 0 .8233 1 .2179 -0 .8428 2 .8840 • 
S112 1 .9601 2 .6012 0 .112 2 .3797 2 .8227 0 .7351 4 .4673 -0 .6411 
S113 1 .8563 3 .9569 0 .145 3 .6695 4 .2443 2 .0819 5 .8320 -2 .1006 
S114 2 .7081 3 .5646 0 .111 3 .3447 3 .7845 1 .6987 5 .4305 -0 .8566 
S115 3 .1781 3 .4703 0 .110 3 .2532 3 .6874 1 .6048 5 .3359 -0 .2923 
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Table 5 continued 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% qpper95% 
name In Q7,io Value Predict Mean Mean Predict Predict Residual 

S116 -0. .9416 -1. .4640 0. ,227 -1. ,9139 -1. ,0140 -3. .3707 0. ,4428 0. .5223 
S117 1. .9315 0. .3895 0. ,140 0. ,1115 0. ,6675 -1. .4841 2. ,2632 1, .5420 
S118 3, .8501 2. .4880 0. ,172 2. .1478 2. ,8282 0. .6041 4. ,3718 1. .3622 
S119 1, .4586 1, .3168 0. ,137 1. .0454 1. ,5881 -0. .5559 3, ,1894 0, .1419 
S120 1, .9315 2, .0716 0. ,096 1. .8809 2, .2624 0, .2090 3. ,9343 -0. .1401 
S123 -4, .6052 -2 .1085 0. .200 -2. .5058 -1. .7111 -4, .0034 -0. ,2135 -2, .4967 
S124 * -3, .7274 0. .228 -4. .1785 -3. .2763 -5, .6344 -1, .8204 * 

S126 2, .1163 1. .6587 0. ,092 1. .4765 1. .8408 -0, .2031 3. .5205 0, .4576 
S128 3, .3673 3, .0970 0. ,106 2. .8865 3. .3074 1. .2322 4. .9618 0. .2703 
S129 •k -3, .3392 0. ,219 -3. .7735 -2. .9049 -5, .2423 -1. .4361 * 

S130 2, .1518 1, .0597 0. .097 0, .8677 1. .2517 -0, .8031 2. .9225 1, .0921 
S131 2 .7081 2 .9098 0. .127 2. .6581 3. .1615 1. .0399 4. .7797 -0, .2017 
S132 3, .4012 2 .8814 0. .120 2. .6443 3, .1186 1 .0134 4, .7494 0 .5198 
S133 * -1 .3366 0, .173 -1. .6803 -0, .9929 -3 .2211 0, .5479 * 

S134 1, .8083 1, .8791 0. .090 1. .6999 2. .0583 0 .0176 3, .7406 -0 .0708 
S135 -0, .5621 -0 .4394 0. .142 -0, .7205 -0. .1582 -2 .3134 1, .4347 -0 .1228 
S136 * -1 .3977 0, .154 -1. .7041 -1, .0914 -3 .2758 0. .4803 •k 

S137 •k -3 .3318 0, .241 -3. .8102 -2, .8534 -5 .2455 -1, .4182 • 
S138 0 .5306 0 .4482 0, .173 0, .1058 0, .7905 -1 .4360 2, .3324 0 .0824 
S139 * -2 .3744 0. .233 -2 .8358 -1, .9130 -4 .2838 -0, .4649 "k 

S140 * -2 .2160 0, .273 -2, .7572 -1, .6749 -4 .1463 -0, .2857 "k 

S141 -2 .4079 -2 .3870 0. .286 -2, .9550 -1. .8190 -4 .3249 -0, .4490 -0 .0210 
S142 -1 .5141 -0 .9747 0. .275 -1, .5195 -0, .4299 -2 .9060 0, .9566 -0 .5394 
S143 -1 .2379 -0 .2430 0. .218 -0, .6761 0, .1900 -2 .1458 1, .6598 -0 .9949 

^ Asterisks refer to the points with Q7,10 = 0 
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Table 6. Resiilts generated by regression model (4.7) (N = 95) 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% Opper95% 
name In Q7,io Value Predict Mean Mean Predict Predict Residual 

SI 3. 5264 2. 4661 0. 122 2. 2241 2. 7082 0. 6026 4. 3297 1. 0602 

S2 a 2. 7421 0. 138 2. 4670 3. 0171 0. 8740 4. 6102 
S3 4. 4998 4. 0196 0. 181 3. 6594 4. 3798 2. 1371 5. 9021 0. 4802 
S4 0. 4055 -1. 3059 0. 243 -1. 7881 -0. 8236 -3. 2155 0. 6038 1. 7113 
S5 2. 9444 2. 3665 0. 220 1. 9297 2. 8032 0. 4678 4. 2652 0. 5780 
S6 9. 1072 8. 9062 0. 271 8. 3675 9. 4448 6. 9815 10. 8308 0. 2010 
S7 2. 1972 1. 4315 0. 150 1. 1145 1. 7485 -0. 4432 3. 3063 0. 7657 
S8 3. 2958 1. 8145 0. 109 1. 5975 2. 0316 -0. 0459 3. 6750 1. 4813 
S9 4. 4308 3. 5909 0. 110 3. 3728 3. 8090 1. 7303 5. 4515 0. 8399 
SIO 2. 0015 0. 7590 0. 162 0. 4365 1. 0816 -1. 1167 2. 6347 1. 2425 
311 3. 0445 1. 2731 0. 106 1. 0619 1. 4843 -0. 5867 3. 1329 1. 7714 
S12 . 1. 2626 0. 287 0. 6935 1. 8317 -0. 6708 3. 1960 
S13 4. 4188 4. 0887 0. 246 3. 5992 4. 5782 2. 1772 6. 0002 0. 3301 
S15 9. 2203 9. 0349 0. 281 8. 4772 9. 5925 7. 1048 10. 9649 0. ,1854 
S16 1. 3863 -0. ,1631 0. 147 -0. 4559 0. 1297 -2. 0339 1. 7077 1. ,5494 
S17 2. 8904 2. ,1084 0. 113 1. 8848 2. 3319 0. 2471 3. 9596 0. ,7820 
S18 4. 6347 4. ,2405 0. 122 3. 9981 4. 4828 2. ,3769 6. 1040 0, .3943 
S19 -0. 9163 -1. ,5670 0. 235 -2. ,0333 -1. ,1006 -3. ,4727 0. 3387 0, .5507 
S20 -1. .2040 -0. ,4241 0. 189 -0. ,7990 -0. ,0493 -2. ,3095 1. ,4513 -0, .7798 
S21 -0. ,2231 -0. ,3902 0. ,145 -0, .6789 -0. ,1014 -2. ,2603 1. ,4800 0. .1670 
S22 1. ,8083 1. .2601 0. ,105 1. .0517 1. .4685 -0. ,5993 3. ,1196 0. .5482 
S23 3. ,0910 2, .6165 0. ,110 2. .3975 2. .8356 0. ,7558 4. ,4772 0, .4745 
S24 . -0. .4898 0. ,142 -0. .7715 -0. .2080 -2. .3589 1. ,3793 
S25 -1. .5606 -0. .9970 0. ,175 -1. .3439 -0. .6501 -2. .8770 0. .8830 -0. .5637 
826 1. ,0647 1. .0246 0. ,130 0. .7671 1. .2821 -0. .8410 2. ,8902 0. .0401 

827 *b -1. .7000 0. ,179 -2. .0550 -1. .3451 -3. .5816 0. ,1815 * 

S28 2. .9706 0. .123 2. .7262 3. .2150 1. .1067 4. .8344 
S29 -0, .5798 1. .5251 0. .167 1. .1929 1. .8573 -0. .3523 3. .4025 -2, .1049 
830 4. .3567 4, .1015 0, .123 3. .8569 4. .3462 2. .2376 5. .9654 0 .2552 
831 * -2, .8720 0. .217 -3. .3032 -2. .4408 -4, .7694 -0. .9746 * 

S32 -0 .7550 -0, .6635 0. .147 -0, .9549 -0, .3722 -2, .5341 1, .2070 -0 .0915 
833 4 .0943 3, .8564 0, .116 3. .6264 4, .0864 1 .9944 5, .7184 0 .2380 
834 * -5, .4303 0, .328 -6, .0811 -4, .7794 -7 .3893 -3, .4712 * 

S35 * -5 .0336 0, .310 -5, .6500 -4 .4171 -6 .9814 -3, .0857 •k 

S3 6 -0 .3412 0, .139 -0 .6172 -0 .0651 -2 .2094 1, .5271 
837 0 .9163 1 .2628 0 .120 1 .0243 1 .5013 -0 .6003 3 .1259 -0 .3465 
S3 8 4 .9273 4 .6751 0 .143 4 .3903 4 .9598 2 .8055 6 .5446 0 .2522 
839 4 .5643 3 .4817 0 .119 3 .2457 3 .7178 1 .6190 5 .3445 1 .0826 
840 1 .8718 1 .0120 0 .110 0 .7930 1 .2311 -0 .8487 2 .8727 0 .8598 
S41 4 .2905 2 .7566 0 .109 2 .5409 2 .9724 0 .8963 4 .6169 1 .5338 
S42 2 .7726 1 .7524 0 .116 1 .5215 1 .9833 -0 .1098 3 .6145 1 .0202 
S43 1 .2528 0 .4454 0 .118 0.2111 0 .6796 -1 .4172 2 .3079 0 .8074 
S44 1 .9879 1 .1476 0 .106 0 .9374 1 .3578 -0 .7121 3 .0073 0 .8403 
S45 3 .4012 2 .0783 0 .113 1 .8534 2 .3032 0 .2169 3 .9397 1 .3229 
S46 4 .2341 3 .5011 0 .107 3 .2889 3 .7133 1 .6412 5 .3610 0 .7330 
S47 2 .8151 0 .211 2 .3958 3 .2345 0 .9204 4.7099 . 
S48 1 .1939 0 .3340 0 .124 0 .0873 0 .5808 -1.5301 2 .1982 0 .8599 
S49 5 .6870 4 .6199 0 .145 4 .3318 4 .9080 2 .7498 6 .4900 1 .0671 
850 -2 .6593 -2 .1403 0 .267 -2 .6702 -1 .6103 -4 .0625 -0 .2180 -0 .5190 
S52 * -1 .9867 0 .244 -2 .4707 -1 .5027 -3 .8968 -0 .0766 * 

S53 5 .8665 5 .1490 0 .149 4 .8529 5 .4451 3 ,2777 7 .0203 0 .7175 
854 . 0 .7839 0 .121 0 .5435 1 .0243 -1 .0794 2 .6472 
855 6 .2166 6 .2481 0 .181 5 .8878 6 .6085 4 .3656 8 .1307 -0 .0315 
S56 6 .3190 6 .2013 0 .178 5 .8473 6 .5552 4 .3199 8 .0826 0 .1177 
S57 - - - - - - - -
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Table 6 continued 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% t^per95% 
name In On,X0 Value Predict Mean Mean Predict Predict Residual 

S58 * 0. 2652 0. 121 0. 0241 0. 5063 -1. 5982 2. 1286 * 

S59 •k 1. 0928 0. 115 0. 8651 1. 3205 -0. 7689 2. 9546 * 

S60 -0. 2357 1. 2236 0. 110 1. 0053 1. 4418 -0. 6370 3. 0842 -1. 4593 
S61 4. 0458 0. 132 3. 7833 4. 3084 2. 1795 5. 9122 
S62 0. .9555 2. 1779 0. 096 1. 9883 2. 3676 0. ,3205 4. 0354 -1. 2224 
S63 3. ,1355 3. 6645 0. 113 3. 4393 3. 8896 1. ,8031 5. 5259 -0. 5290 
S64 0. 8755 1. 3130 0. 118 1. 0790 1. 5470 -0. ,5495 3. 1755 -0. ,4375 
S65 * -1. 1438 0. 162 -1. 4665 -0. 8212 -3. ,0195 0. 7319 * 

S66 3. 4965 3. 7130 0. 161 3. 3926 4. 0335 1. 8377 5. ,5883 -0. ,2165 
S67 9. ,3927 9. 9107 0. 306 9. 3024 10. 5191 7. 9654 11. 8561 -0. ,5181 
S69 3. ,2581 4. ,5572 0. 172 4. ,2152 4. ,8991 2. ,6781 6. 4363 -1. ,2991 
S70 2. ,2513 2. ,0009 0. 109 1. ,7845 2. ,2174 0. ,1405 3. 8613 0. ,2504 
S71 -2. ,2073 -0. ,6055 0. 148 -0. ,8997 -0. ,3113 -2, ,4765 1. ,2655 -1. ,6018 
S72 3. .6376 4. ,0115 0. 119 3. ,7762 4. .2469 2. .1488 5. ,8742 -0. ,3740 
S73 0. .8329 0. ,7141 0. 174 0. ,3685 1. ,0597 -1. .1657 2. ,5939 0. .1188 
S74 3. .7136 5. .1273 0. 155 4. .8197 5. .4350 3. .2542 7. .0005 -1. .4138 
S76 ilr 0. .8653 0. 110 0. .6476 1. .0831 -0. .9952 2. .7259 * 

S77 3. ,8067 3. ,9472 0. 131 3. .6879 4. .2065 2. .0813 5. .8130 -0. .1405 
S78 * -0. ,6121 0. 171 -0. ,9517 -0. .2724 -2, .4908 1, .2667 * 

S79 , 1. .4652 0. 107 1. .2519 1. .6785 -0. .3949 3, .3252 , 
S80 2, .2083 2. .5313 0. 107 2. ,3189 2. .7437 0. .6714 4. .3913 -0. .3231 
S81 •k -2, .6441 0. 236 -3. .1124 -2, .1758 -4. .5503 -0. .7379 * 

S82 2. .5649 2. .2902 0. 170 1, .9529 2. .6274 0. .4119 4, .1684 0. .2748 
S83 3. .2581 2. .4959 0. ,098 2. .3003 2. .6915 0, .6378 4. .3540 0. .7622 
S84 3. .5553 3, .4989 0. ,119 3. .2621 3. .7358 1, .6360 5. .3618 0. .0564 
S85 * -0, .9477 0. ,154 -1. ,2535 -0. .6418 -2, .8206 0. .9252 * 

S86 4. .5951 6, .1361 0. ,180 5. .7787 6. .4935 4 .2541 8. .0181 -1. .5410 
S87 * -0. .6373 0. ,145 -0, .9252 -0, .3494 -2 .5074 1. .2327 * 

S88 -3. .2189 -0. .6142 0. ,199 -1. .0098 -0. .2185 -2 .5038 1. .2755 -2, .6047 
S89 0, .4055 1, .4442 0. ,101 1. .2445 1. .6439 -0, .4143 3. .3027 -1, .0387 
S90 -0. .1985 -0, .7956 0. ,251 -1. .2941 -0, .2972 -2 .7094 1. .1182 0. .5972 
S91 -1, .0217 -0, .2918 0. ,182 -0. .6535 0, .0699 -2 .1746 1. .5910 -0. .7298 
S92 -0 .5798 -0, .0583 0. .160 -0, .3752 0, .2585 -1 .9331 1. .8164 -0, .5215 
S93 4, .8040 5. .1147 0. .159 4, .7993 5, .4301 3 .2402 6, .9892 -0, .3107 
S94 -1 .2379 -0 .1747 0, .179 -0, .5294 0, .1799 -2 .0562 1. .7067 -1, .0631 
S95 4 .8203 5 .2833 0, .164 4, .9573 5 .6092 3 .4070 7, .1595 -0, .4630 
S96 4 .9628 5 .1354 0, .173 4 .7913 5, .4795 3 .2559 7, .0149 -0 .1726 
S97 * -1 .7619 0, .205 -2 .1688 -1 .3550 -3 .6539 0, .1302 * 

S98 , -2 .6002 0. .242 -3 .0807 -2 .1197 -4 .5094 -0, .6910 
S99 * -1 .8676 0. .243 -2, .3501 -1, .3851 -3 .7773 0 .0421 * 

SlOO 0 .4700 1 .3420 0, .128 1, .0870 1, .5971 -0 .5232 3, .2073 -0 .8720 
SlOl 0 .5306 0 .9544 0, .155 0 .6472 1 .2615 -0 .9187 2, .8275 -0 .4237 
S103 2 .9444 3 .3249 0, .106 3 .1143 3 .5356 1 .4652 5, .1847 -0 .3805 
S104 8 .2610 8 .7948 0, .266 8 .2662 9 .3234 6 .8729 10 .7167 -0 .5338 
S105 -3 .2189 -3 .2749 0 .231 -3 .7346 -2 .8152 -5 .1790 -1 .3709 0 .0561 
S106 * -1 .2125 0 .169 -1 .5488 -0 .8761 -3 .0906 0 .6657 * 

S107 * -2 .3808 0 .221 -2 .8198 -1 .9417 -4 .2800 -0 .4816 * 

S108 , 1 .8722 0 .123 1 .6280 2 .1164 0.( D0839 3.7360 
S109 1 .3863 1 .2907 0 .137 1 .0184 1 .5631 -0 .5770 3 .1585 0 .0955 
SllO 2 .6391 2 .5698 0 .097 2 .3765 2 .7632 0 .7120 4 .4277 0 .0692 
Sill * 1 .0834 0 .107 0 .8714 1 .2954 -0 .7765 2 .9433 * 

S112 1 .9601 2 .6793 0 .121 2 .4387 2 .9198 0 .8159 4 .5426 -0 .7192 
S113 1 .8563 4 .0311 0 .156 3 .7215 4 .3406 2 .1576 5 .9046 -2 .1748 
S114 2 .7081 3 .6218 0 .117 3 .3896 3 .8541 1 .7595 5 .4841 -0 .9138 
S115 3 .1781 3 .5288 0 .116 3 .2990 3 .7586 1 .6668 5 .3908 -0 .3507 



www.manaraa.com

Table 6 continued 

208 

Assigned Dep Var Predict Std Err ljower95% Upper95% Lower95% I4iper95% 
name In Q7,io Value Predict Mean Mean Predict Predict Residual 

S116 -0. ,9416 -1. .3043 0. 244 -1. 7897 -0. ,8190 -3. .2148 0, .6061 0. .3627 
S117 1. .9315 0. ,4329 0. 150 0. 1348 0. ,7309 -1, .4388 2. .3045 1. .4987 
S118 3. .8501 2. ,4879 0. 180 2. 1296 2. ,8461 0, .6057 4. .3700 1. .3623 
S119 1. .4586 1. ,4222 0. 150 1. 1246 1. ,7198 -0, .4494 3. .2938 0, .0364 
S120 1. .9315 2. ,1442 0. 104 1. 9378 2. ,3506 0, .2849 4. .0034 -0, .2126 
S123 -4. .6052 -1. ,9679 0. 214 -2. 3936 -1. .5422 -3, .8640 -0. .0717 -2, .6373 
S124 • -3. ,6042 0. 241 -4. 0835 -3. .1249 -5 .5131 -1. .6953 * 

S126 2. .1163 1. ,7272 0. 099 1, 5308 1. .9236 -0 .1310 3, .5854 0 .3891 
S128 3, .3673 3. ,1617 0. ,113 2. 9369 3. .3865 1 .3003 5. .0231 0 .2056 
S129 •k -3. .2060 0. ,232 -3. 6677 -2. .7442 -5 .1106 -1, .3014 * 

S130 . 1. .1294 0. ,104 0. 9221 1. ,3367 -0 .7299 2, .9888 
S131 2. .7081 2. .9925 0. ,138 2. 7186 3. ,2664 1 .1246 4, .8605 -0 .2845 
S132 3. .4012 2, .9047 0. ,124 2. 6592 3. ,1501 1 .0407 4, .7687 0 .4965 
S133 * -1, .2094 0. ,186 -1. 5795 -0. .8394 -3 .0939 0, .6750 * 

S134 1. .8083 1, .9433 0. ,097 1. 7511 2. .1355 0 .0855 3 .8010 -0 .1350 
S135 . -0. .3772 0. ,152 -0. 6795 -0. .0748 -2 .2495 1 .4952 
S136 • -1. .3074 0. .166 -1. ,6362 -0. .9787 -3 .1842 0 .5694 * 

S137 * -3, .2575 0. .258 -3. ,7701 -2. .7449 -5 .1751 -1 .3400 * 

S138 0. .5306 0, .4733 0. .185 0. ,1063 0. .8403 -1 .4106 2 .3571 0 .0574 
S139 • -2. .3225 0. .250 -2. ,8188 -1. .8262 -4 .2357 -0, .4092 * 

S140 * -2, .1899 0. .294 -2. ,7734 -1. .6063 -4 .1276 -0 .2521 * 

S141 -2 .4079 -2 .3640 0, .308 -2. ,9768 -1. .7513 -4 .3107 -0 .4174 -0 .0439 
S142 -1 .5141 -0 .9727 0. .296 -1. ,5602 -0, .3852 -2 .9116 0 .9662 -0 .5415 
S143 -1 .2379 -0 .2280 0. .235 -0. .6939 -0, .2379 -2 .1335 1 .6776 -1 .0099 

^ Dots refer to 13 deleted points 

^ Asterisks refer to the points with Q7,lo = 0 
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Table 7. Results of the regression model (4.8) (N=108) 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% l^per95% 
name In Q7,lo Value Predict Mean Mean Predict Predict Residual 

SI 3. ,5264 1. 4095 0. 142 1. 1272 1. 6919 -1. 4258 4. 2449 2. ,1168 
S2 3. .3673 1. 5270 0. 141 1. ,2481 1. 8058 -1. 3080 4. 3619 1. 8403 
S3 4. ,4998 1. 9353 0. 137 1. ,6635 2. 2071 -0. 8990 4. 7696 2. 5645 
S4 0. ,4055 -1. ,7702 0. 270 -2. ,3059 -1. 2346 -4. 6419 1. 1014 2. 1757 
S5 2. .9444 0. ,3520 0. 172 0. ,0116 0. 6925 -2. 4897 3. 1937 2. 5924 
S6 9. .1072 7. ,6715 0. 369 6. ,9409 8. 4021 4. 7572 10. 5858 1. ,4357 
S7 2, .1972 0. ,0501 0. 183 -0. ,3136 0. 4137 -2. ,7945 2. 8946 2. ,1472 
S8 3. .2958 2. ,1239 0. ,137 1. ,8523 2. 3955 -0. ,7104 4. ,9582 1. ,1719 
S9 4. .4308 2. ,8283 0. 145 2. ,5411 3. ,1154 -0. ,0076 5. ,6641 1. ,6026 
SIO 2. .0015 -0. ,3457 0. 200 -0. .7427 0. 0514 -3. ,1947 2. ,5034 2. ,3471 
Sll 3. .0445 0. ,7478 0. 158 0. .4339 1. 0618 -2. ,0908 3. ,5865 2. ,2967 
S12 1. .0296 -1. ,3096 0. ,246 -1, .7981 -0. 8211 -4. ,1728 1. ,5536 2. ,3392 
S13 4. .4188 1. ,4220 0. ,142 1. .1401 1. ,7040 -1. ,4133 4. ,2573 2. ,9968 
S15 9. .2203 7. .9761 0.386 7, .2112 8. ,7410 5. ,0530 10. ,8992 1. ,2442 
S16 1. .3863 -0. .7452 0, ,219 -1. ,1786 -0. ,3117 -3. ,5995 2. ,1092 2. ,1314 
S17 2. .8904 2. .3306 0, .138 2, ,0570 2. ,6041 -0. ,5039 5. ,1650 0. ,5598 
S18 4, .6347 3. .3551 0. .158 3, ,0414 3. ,6687 0. ,5164 6. ,1937 1. ,2797 
S19 -0, .9163 -2. ,8952 0. ,331 -3. ,5516 -2. ,2389 -5. ,7918 0. ,0013 1, ,9789 
S20 -1. .2040 -0. ,4271 0. ,204 -0, ,8314 -0. ,0228 -3. ,2771 2. ,4229 -0, ,7769 
S21 ' -0. .2231 -0. .3164 0. ,199 -0, ,7109 0, ,0780 -3, ,1651 2. ,5323 0. ,0933 
S22 1. .8083 1. .1853 0. ,147 0. ,8942 1. ,4763 -1. ,6509 4. ,0215 0, ,6230 
S23 3. .0910 2. .8439 0. ,145 2. ,5562 3. ,1317 0. ,0081 5. ,6798 0, ,2471 
S24 -0, .9416 -0. ,4698 0. ,206 -0. .8779 -0. ,0618 -3. ,3204 2. ,3807 -0. ,4718 
S25 -1, .5606 -1. .4233 0. .252 -1, .9232 -0, ,9233 -4, ,2885 1. ,4419 -0. ,1374 
S26 X. .0647 0. .2131 0. .177 -0, .1377 0, ,5639 -2, ,6298 3, ,0561 0, ,8516 

S27 -1, .1231 0. .237 -1, .5930 -0, ,6531 -3, ,9832 1. ,7370 * 

S28 3, .8067 3. .4221 0. .160 3, .1043 3, ,7399 0, ,5830 6, ,2611 0. ,3846 
S29 -0 .5798 0. .1342 0. ,180 -0, .2228 0. ,4911 -2. ,7095 2, ,9779 -0, ,7140 
S30 4.3567 3. .5879 0. ,166 3 .2593 3, ,9166 0, ,7476 6, ,4282 0, ,7688 
S31 * -2. .4444 0. ,306 -3 .0516 -1, ,8372 -5, ,3302 0, ,4415 •k 

S3 2 -0, .7550 -0. .7067 0, ,217 -1, .1365 -0. ,2768 -3, ,5605 2, ,1471 -0, .0483 
S33 4, .0943 3. ,7900 0. ,173 3, .4470 4. ,1331 0. ,9480 6. ,6321 0, .3043 
S34 * -5. .1741 0. ,461 -6, .0881 -4. .2602 -8, ,1397 -2. ,2086 * 

S35 * -5. .2043 0. ,463 -6, .1218 -4, ,2869 -8, ,1710 -2, ,2377 • 
S3 6 -1, .6094 0. .2131 0. ,177 -0, .1377 0, .5639 -2, ,6298 3, ,0561 -1, .8225 
S37 0 .9163 1, .5564 0. .140 1 .2784 1, .8344 -1 .2785 4. ,3913 -0, .6401 
S3 8 4 .9273 4, .1387 0, .187 3 .7684 4. .5089 1, .2933 6. ,9841 0. .7886 
S3 9 4 .5643 2, .3379 0, .138 2 .0642 2, .6115 -0 .4966 5. ,1723 2, .2265 
S40 1, .8718 0. .7520 0, .158 0 .4383 1 .0657 -2 .0866 3, .5906 1, .1198 
S41 4, .2905 2, .9211 0. .147 2 .6301 3 .2121 0 .0849 5, .7573 1 .3694 
S42 2 .7726 2, .0560 0. .137 1 .7845 2, .3275 -0 .7783 4, .8903 0 .7166 
S43 1 .2528 0, .7266 0, .159 0 .4114 1, .0419 -2 .1122 3. .5654 0 .5261 
S44 1 .9879 1, .4466 0, .142 1 .1655 1 .7278 -1 .3886 4. ,2819 0 .5412 
S45 3 .4012 2 .6361 0, .141 2 .3557 2 .9165 -0 .1990 5, ,4712 0 .7651 
S46 4 .2341 2 .9851 0, .148 2 .6912 3 .2789 0 .1486 5, .8216 1 .2490 
S47 1 .6094 0 .9133 0, .154 0 .6089 1 .2177 -1 .9244 3, .7509 0 .6962 
S48 1 .1939 0 .7394 0 .159 0 .4249 1 .0538 -2 .0993 3. .5781 0 .4545 
S49 5 .6870 4 .3711 0 .197 3 .9812 4 .7609 1 .5230 7 .2191 1 .3159 
S50 -2 .6593 -3 .2235 0 .349 -3 .9161 -2 .5309 -6 .1285 -0 .3185 0 .5642 
S52 • -2 .7776 0 .325 -3 .4210 -2 .1342 -5 .6713 0 .1161 * 

S53 5 .8665 4 .6726 0 .210 4 .2558 5 .0893 1 .8207 7 .5244 1 .1939 
S54 -0 .8210 0 .0573 0 .183 -0 .3058 0 .4203 -2 .7872 2 .9018 -0 .8783 
S55 6 .2166 4 .9019 0 .221 4 .4637 5 .3401 2 .0468 7 .7570 1 .3147 
S56 6 .3190 5 .5090 0 .251 5 .0112 6 .0068 2 .6442 8 .3738 0 .8100 
S57 - - - - - - _ _ 
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Table 7 continued 

Assigned Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95% 
name In On ,10 Value Predict Mean Mean Predict Predict Residual 

S58 • 0. 2321 0. 176 -0. 1173 0.5815 -2. 6107 3. 0749 * 

S59 * 1. 5178 0. 141 1. 2387 1. 7968 -1. 3172 4. 3528 * 

S60 -0. 2357 0. 6197 0. 162 0. 2977 0. 9417 -2. 2198 3. 4593 -0. 8554 
S61 2. 3979 2. 9009 0. 146 2. 6107 3. 1910 0. 0647 5. 7370 -0. 5030 
S62 0. 9555 1. 8669 0. 137 1. 5945 2. 1393 -0. 9675 4. 7012 -0. 9114 
S63 3. 1355 3. 6312 0. 167 3. 2996 3. 9629 0. 7906 6. 4719 -0. 4958 
S64 0. 8755 1. 4564 0. 142 1. 1755 1. 7372 -1. 3788 4. 2915 -0. 5809 
S65 * -0. 6074 0. 212 -1. 0280 -0. 1867 -3. 4598 2. 2451 * 

S66 3. 4965 4. 1417 0. 187 3. 7712 4. 5122 1. 2962 6. 9871 -0. 6452 
S67 9. 3927 8. 3985 0. 410 7. 5857 9. 2113 5. 4626 11. 3345 0. 9941 
S69 3. 2581 3. 3137 0. 157 3. 0025 3. 6249 0. 4753 6. 1520 -0. 0556 
S70 2. 2513 2. 6147 0. 141 2. 3349 2. 8945 -0. 2203 5. 4498 -0. 3634 
S71 -2. 2073 0. 5283 0. 165 0. 2002 0. 8563 -2. 3120 3. 3685 -2. 7355 
S72 3. 6376 4. 1075 0. 185 3. 7398 4. 4752 1. 2624 6. ,9526 -0. 4700 
S73 0. 8329 2. 0530 0. 137 1. 7815 2. 3244 -0. 7813 4. ,8872 -1. 2201 
S74 3. 7136 4. 4451 0. 200 4. 0488 4. 8415 1. 5962 7. ,2941 -0. 7316 
S76 * 0. 9533 0. 152 0. 6510 1. ,2555 -1. ,8841 3. ,7906 • 
S77 3. ,8067 4. 6193 0. 208 4. ,2074 5. ,0312 1. ,7681 7. ,4704 -0. 8126 
S78 * -0. 9682 0. ,229 -1. ,4230 -0. ,5134 -3. .8259 1. .8894 * 

S79 0. .5878 1. 8131 0. 138 1. ,5401 2, ,0861 -1, .0213 4. .6475 -1. 2253 
S80 2. ,2083 2. 8882 0. ,146 2. ,5987 3. ,1778 0. .0522 5. .7243 -0. 6800 
S81 * -2. ,5120 0. ,310 -3. ,1265 -1, .8975 -5. .3994 0. .3754 •k 

S82 2. .5649 1. ,2177 0. ,146 0. .9281 1. .5074 -1. .6183 4. .0538 1. 3472 
S83 3. .2581 2. .2627 0. ,138 1. .9901 2. .5354 -0. .5717 5. .0971 0. ,9954 
S84 3. .5553 3. ,8550 0. ,175 3. .5071 4. .2029 1, .0124 6. .6976 -0. ,2997 
S85 * -0. .9941 0. ,231 -1. .4514 -0. .5368 -3. .8522 1. .8639 • 
S86 4. .5951 5. .2073 0. .236 4. .7397 5. .6750 2, .3476 8. .0671 -0. ,6122 
S87 * -0. .7793 0. .220 -1. .2160 -0, .3426 -3, .6341 2, .0756 * 

S88 -3. .2189 0, .9206 0, .153 0. .6166 1, .2246 -1 .9169 3, .7582 -4, ,1395 
S89 0. .4055 1. .3893 Q. .143 1, .1062 1, .6724 -1 .4461 4, .2247 -0. .9838 
S90 -0. .1985 1, .2747 0. .145 0. .9874 1, .5620 -1. .5611 4 .1105 -1, .4732 
S91 -1, .0217 0, .8946 0. .154 0, .5892 1, .2001 -1 .9431 3, .7324 -1. .9163 
S92 -0. .5798 1. .0297 0. .150 0, .7314 1 .3280 -1 .8072 3 .8667 -1, .6096 
S93 4 .8040 5 .5069 0, .251 5, .0094 6 .0045 2 .6422 8 .3717 -0, .7029 
S94 -1 .2379 1 .0093 0, .151 0 .7100 1 .3087 -1 .8277 3 .8464 -2. .2472 
S95 4, .8203 5 .5957 0. .256 5 .0892 6 .1023 2 .7294 8 .4621 -0 .7755 
S96 4 .9628 5 .6579 0, .259 5 .1450 6 .1708 2 .7904 8 .5254 -0, .6950 
S97 * -0 .6195 0, .213 -1 .0413 -0 .1978 -3 .4721 2 .2331 • 
398 -3 .2189 -0 .8504 0 .224 -1 .2938 -0 .4069 -3 .7062 2 .0055 -2 .3685 
S99 * -0 .0714 0 .188 -0 .4450 0 .3021 -2 .9173 2 .7744 * 

SlOO 0 .4700 1 .9649 0 .137 1 .6932 2 .2366 -0 .8694 4 .7992 -1 .4949 
SlOl 0 .5306 2 .8667 0 .146 2 .5780 3 .1554 0 .0307 5 .7026 -2 .3361 
S103 2 .9444 4 .7540 0 .214 4 .3297 5 .1783 1 .9011 7 .6070 -1 .8096 
S104 8 .2610 9 .6451 0 .482 8 .6891 10 .6011 6 .6663 12 .6239 -1 .3841 
S105 -3 .2189 -1 .2325 0 .242 -1 .7133 -0 .7517 -4 .0944 1 .6294 -1 .9864 
S106 * 0 .5820 0 .164 0 .2575 0 .9065 -2 .2578 3 .4218 •k 

S107 * 0 .0716 0 .183 -0 .2903 0 .4335 -2 .7727 2 .9160 * 

S108 1 .0296 2 .1152 0 .137 1 .8437 2 .3868 -0 .7190 4 .9495 -1 .0856 
S109 1 .3863 1 .1051 0 .149 0 .8105 1 .3997 -1 .7315 3 .9417 0 .2812 
SllO 2 .6391 2 .1353 0 .137 1 .8637 2 .4070 -0 .6989 4 .9696 0 .5037 
Sill * 1 .1763 0 .147 0 .8849 1 .4677 -1 .6600 4 .0125 •k 

S112 1 .9601 2 .6400 0 .142 2 .3594 2 .9205 -0 .1952 5 .4751 -0 .6799 
S113 1 .8563 2 .8307 0 .145 2 .5435 3 .1180 -0. 00507 5 .6666 -0 .9744 
S114 2 .7081 3 .4454 0 .161 3 .1261 3 .7646 0 .6061 6 .2846 -0 .7373 
SU5 3 .1781 3 .5620 0 .165 3 .2351 3 .8889 0 .7219 6 .4021 -0 .3839 
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Table 7 continued 

Assigned Dep Var Predict Std Err Lower95% llpper95% Lower95% Hpper95% 
name In Q7,lo Value Predict Mean Mean Predict Predict Residual 

S116 -0. 9416 -1. .8796 0. ,276 -2. .4267 -1. .3326 -4. ,7534 0. ,9941 0. ,9380 
S117 1. 9315 1. 7550 0. 138 1. .4811 2, .0289 -1. ,0795 4. ,5895 0. .1765 
S118 3. 8501 3. 8863 0. 177 3, .5361 4, .2365 1. ,0434 6. ,7292 -0. .0362 
S119 1. 4586 1. ,1178 0. 148 0. ,8237 1, .4118 -1. .7188 3. ,9543 0. .3409 
S120 1. 9315 2. ,0933 0. 137 1. ,8218 2. .3649 -0. ,7409 4. ,9276 -0, .1618 
S123 -4. ,6052 -2, ,1431 0. ,290 -2. .7180 -1. .5683 -5. ,0223 0. ,7361 -2. .4620 
S124 it -2. ,2089 0. ,293 -2. ,7908 -1. .6270 -5. ,0895 0. ,6717 * 

S126 2. ,1163 1. ,6345 0. ,139 1. .3584 1, .9107 -1. ,2002 4. .4692 0. ,4817 
S128 3. .3673 2. .6323 0. .141 2, ,3519 2, .9126 -0. .2029 5. .4674 0. .7350 
S129 * -2. .4094 0. .304 -3. ,0128 -1, .8060 -5. .2944 0. .4757 * 

S130 2. ,1518 1, .2060 0. .146 0. ,9159 1, .4961 -1. .6301 4. .0421 0, ,9457 
S131 2. ,7081 2. .1268 0. .137 1. ,8551 2, .3984 -0. .7075 4. .9610 0, .5813 
S132 3. ,4012 3. .5934 0. ,166 3, .2644 3 .9225 0. .7531 6, .4338 -0, .1922 
S133 •k -1. .5890 0. .261 -2, .1058 -1 .0721 -4. .4571 1. .2792 * 

S134 1. ,8083 1, .9219 0, .137 1, .6500 2 .1938 -0. .9124 4. .7562 -0 .1136 
S135 -0, .5621 0, .3113 0, .173 -0, .0321 0 .6548 -2, .5307 3. .1534 -0 .8734 
S136 • -0, .7876 0, .221 -1, .2251 -0 .3501 -3, .6426 2, .0673 * 

S137 * -1, .5083 0, .257 -2 .0169 -0 .9997 -4, .3750 1, .3584 * 

S138 0. .5306 1, .8149 0, .138 1 .5419 2 .0879 -1, .0195 4. .6493 -1 .2843 
S139 * -0, .6318 0 .213 -1 .0547 -0 .2089 -3, .4845 2 .2210 * 

S140 * 0, .0858 0, .182 -0 .2750 0 .4466 -2 .7584 2 .9300 * 

S141 -2. .4079 -0, .0169 0, .186 -0 .3859 0 .3522 -2 .8621 2 .8284 -2 .3911 
S142 -1. .5141 1. .5015 0, .141 1 .2220 1 .7811 -1 .3335 4 .3366 -3 .0156 
S143 -1, .2379 1. .8277 0, .138 1 .5548 2 .1005 -1 .0067 4 .6621 -3 .0655 

^ Asterisks refer to the points with Q7,io = 0 
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APPENDIX B 

1. Coefficients of MRC's equations 

2. 134 Pairs of Master Recession Ciirves (MRC's) for 134 Iowa Streams 
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Table 1. Coefficients of MRC's equations: T = A (log Q)**2 + B (log Q) + C 

Assigned No of Rec Coefficients of MRC's No of Rec Coefficients of MRC's 
name segments equations segments equations 

for winter for summer 

A B C A B C 

SI 16 4.62 -47.93 95.23 16 9.86 -75.33 133.18 
S2 14 -10.33 24.19 12.80 21 8.64 -71.57 133.38 
S3 21 6.44 -72.10 166.60 21 24.39 -171.28 292.39 
S4 15 -7.81 -12.10 35.02 13 -4.65 -12.39 30.07 
S5 11 9.89 -76.34 126.61 24 10.84 -73.07 117.62 
S6 16 -2.77 -15.14 149.71 32 -4.64 5.46 99.31 
S7 22 3.83 -42.38 86.84 26 6.91 -55.25 95.44 
S8 4 -0.87 -14.56 54.44 8 9.94 -76.07 141.36 
S9 36 1.27 -36.50 113.98 48 -0.06 -26.22 94.73 
SIO 27 2.94 -36.53 70.77 41 3.32 -36.54 69.98 
Sll 14 8.92 -62.15 106.11 16 10.15 -69.35 113.81 
S12 17 32.23 -141.33 152.93 42 18.80 -87.32 99.51 
S13 13 13.96 -112.42 209.44 18 32.57 -201.87 308.26 
S15 32 7.32 -109.68 372.74 44 7.13 -111.55 388.99 
S16 16 3.43 -34.15 56.94 41 5.29 -36.36 54.42 
S17 25 9.28 -74.47 143.99 44 5.69 -51.59 106.05 
S18 44 9.24 -87.92 200.24 44 10.77 -93.84 202.53 
S19 6 5.99 -37.08 47.53 11 9.07 -38.75 36.29 
S20 9 6.75 -41.38 60.88 20 3.00 -30.78 57.32 
S21 13 6.57 -40.71 57.24 31 3.10 -29.04 54.51 
S22 34 3.19 -38.60 87.09 45 5.16 -45.31 91.03 
S23 25 1.94 -32.13 90.13 34 7.47 -65.71 139.69 
S24 8 0.74 -13.07 22.99 16 1.62 -26.84 52.76 
S25 14 -2.20 -12.30 31.98 14 -2.56 -11.52 34.76 
S26 9 1.62 -27.67 54.31 8 3.24 -34.33 59.70 
S27 7 1.78 -16.09 24.26 8 1.49 -20.17 31.41 
S28 12 -1.30 -13.44 61.94 16 0.26 -21.66 71.73 
S29 43 0.58 -29.83 75.80 41 3.70 -41.75 82.96 
S30 10 3.08 -43.62 116.53 29 6.12 -66.61 167.73 
S31 7 0.22 -11.73 20.30 23 0.15 -15.04 18.75 
S3 2 7 -0.20 -18.45 41.13 11 2.33 -21.18 36.83 
S33 18 8.36 -85.00 204.40 31 7.04 -70.21 165.23 
S34 12 1.00 -13.21 11.06 15 1.49 -14.15 9.09 
S3 5 6 0.47 -13.71 10.76 13 2.67 -15.91 14.30 
S3 6 13 0.41 -16.83 43.40 14 1.22 -23.62 47.68 
S3 7 28 1.81 -27.27 62.89 36 1.45 -24.73 59.69 
S3 8 10 -2.60 -9.68 76.37 16 0.29 -25.79 98.07 
S3 9 20 4.98 -54.04 126.08 31 12.50 -101.68 200.77 
S40 18 2.89 -36.38 79.75 31 1.88 -27.54 58.63 
S41 16 11.68 -92.45 180.27 20 10.03 -85.08 173.58 
S42 19 2.33 -32.21 84.49 40 5.30 -50.49 110.67 
S43 7 -0.32 -15.63 45.12 18 -2.72 -5.11 43.66 
S44 28 0.18 -21.30 66.83 48 1.76 -27.01 68.51 
S45 9 2.33 -30.44 73.73 15 -0.78 -15.29 58.80 
S46 12 10.48 -96.38 212.17 39 4.00 -50.80 130.56 
S47 29 6.27 -57.29 111.09 42 7.60 -64.56 119.44 
S48 6 -1.57 -4.80 25.08 20 8.09 -52.22 78.76 
S49 21 7.71 -79.66 197.90 30 8.62 -87.69 215.03 
S50 4 11.20 -29.31 17.82 8 14.21 -40.14 26.75 
S52 8 -5.80 -11.07 18.00 11 4.17 -30.33 29.90 
S53 31 9.53 -98.72 247.46 47 13.31 -126.09 295.67 
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Table 1 continued 

Assigned No of Rec Coefficients of MRC's No of Rec Coefficients of MRC's 
name segments equations segments equations 

for winter for suitimer 

A B C  A  B  

S54 8 -6.04 1.98 26.41 17 3.74 -35.93 61.79 
S55 17 19.56 -184.73 433.57 41 16.79 -159.12 375.54 
S56 12 9.05 -98.95 263.38 26 12.37 -126.40 313.10 
S57 13 3.09 -30.26 64.93 30 1.76 -20.26 42.17 
S58 11 2.44 -29.65 58.21 16 2.55 -25.77 49.80 
S59 9 0.53 -20.85 63.86 19 2.69 -26.83 56.47 
S60 9 3.47 -35.85 73.51 28 3.19 -34.10 70.31 
S61 18 3.43 -49.28 124.14 36 8.61 -75.67 160.42 
S62 9 2.10 -29.59 66.29 23 -4.05 -2.21 41.08 
S63 15 3.31 -41.50 110.53 29 6.79 -66.64 154.56 
S64 13 3.59 -33.62 62.17 17 6.23 -41.52 63.99 
S65 27 0.60 -18.11 34.13 40 3.66 -26.40 39.88 
S66 31 8.73 -80.20 180.24 38 6.69 -64.09 147.53 
S67 9 -11.53 71.42 -63.12 22 0.62 -52.30 261.69 
S69 9 12.95 -105.41 200.02 25 -9.72 29.74 18.96 
S70 13 5.05 -49.44 111.06 39 4.21 -41.44 86.93 
S71 9 1.77 -22.86 47.81 26 3.37 -28.63 53.60 
S72 10 13.14 -118.13 259.18 22 8.01 -75.70 170.95 
S73 13 3.25 -30.62 65.41 15 2.85 -28.78 64.58 
S74 17 6.85 -76.94 196.46 37 5.69 -64.15 167.19 
S76 15 -1.00 -13.51 41.21 37 -2.57 -6.04 32.99 
S77 8 5.21 -56.88 138.08 21 5.60 -60.02 150.05 
S78 16 -2.48 -7.75 29.42 40 1.27 -19.61 39.96 
S79 8 2.22 -32.10 79.67 18 2.12 -25.16 57.17 
S80 15 3.06 -34.53 84.79 32 4.94 -49.33 113.69 
S81 8 4.14 -27.61 37.54 19 3.13 -20.22 24.60 
S82 5 26.40 -153.79 216.94 10 8.04 -57.63 93.71 
S83 9 6.22 -55.45 107.06 23 9.01 -70.27 128.56 
S84 24 8.00 -75.75 171.28 35 5.31 -55.66 128.34 
S85 5 10.66 -55.95 70.34 11 -2.24 -9.11 30.88 
S86 11 7.74 -83.22 207.59 31 9.65 -95.63 223.96 
S87 8 -2.05 -10.86 35.09 16 -2.84 -5.66 27.01 
S88 15 1.86 -19.28 39.12 24 -1.50 -8.21 27.00 
S89 18 -5.21 1.44 33.38 21 2.00 -26.82 58.95 
S90 8 -0.62 -8.17 25.15 16 2.92 -22.04 36.54 
S91 13 0.34 -14.56 31.96 23 2.15 -21.50 38.14 
S92 19 -1.19 -10.55 34.76 16 1.48 -19.23 34.47 
S93 16 5.08 -64.17 176.69 26 6.47 -73.26 191.17 
S94 8 2.50 -22.29 38.24 17 -2.11 -5.49 22.43 
S95 16 8.62 -87.81 214.32 33 6.91 -76.47 204.94 
S96 14 5.56 -63.14 166.11 32 8.41 -88.62 222.29 
S97 11 1.43 -15.94 23.29 13 1.74 -16.67 22.55 
S98 9 4.33 -20.80 21.79 16 2.05 -13.08 16.56 
S99 9 2.39 -20.94 34.48 17 2.89 -17.59 23.26 
SlOO 13 4.11 -38.10 67.04 18 7.79 -52.77 83.33 
SlOl 11 2.05 -21.86 47.28 25 4.28 -39.26 79.35 
S103 12 4.14 -44.65 107.70 26 4.08 -48.43 116.27 
S104 7 26.00 -257.94 632.83 15 9.13 -123.54 378.81 
S105 7 12.08 -36.40 25.34 9 1.22 -11.36 12.57 
S106 12 1.91 -20.32 34.76 16 1.76 -16.95 25.64 
S107 7 -1.14 -10.01 20.59 19 -2.99 -6.80 23.18 
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Table 1 continued 

Assigned No of Rec Coefficients of MRC's No of Rec Coefficients of MRC's 
name segments equations segments equations 

for winter for smtimer 

A B C A B C 

S108 10 5. 11 -40.46 70.50 15 5.76 -49.36 92.22 
S109 8 6. 00 -44.39 67.68 12 8.17 -55.19 85.07 
SllO 20 -2. ,33 -8.79 63.20 17 2.48 -36.65 100.74 
Sill 6 3. ,96 -33.64 65.39 13 3.26 -33.62 72.20 
S112 10 2. ,98 -41.03 100.42 19 4.79 -49.30 112.90 
S113 12 5. ,85 -57.36 117.53 17 5.98 -58.32 127.28 
S114 11 12. ,94 -102.52 196.20 24 5.84 -58.10 129.37 
S115 13 6. ,80 -60.18 122.59 20 3.23 -47.69 119.29 
S116 6 -3. ,78 -11.78 26.62 12 8.37 -48.47 56.88 
S117 7 -3. ,15 -0.06 20.54 16 -1.83 -7.95 42.79 
S118 9 -1, .53 -8.15 48.73 17 -1.32 -9.68 58.45 
S119 9 4, ,26 -37:38 62.28 11 -4.24 -13.38 67.46 
S120 14 -4. .05 -2 .'96 36.08 17 -7.51 7.04 37.33 
S123 4 2. .40 -16.95 11.50 6 -7.23 -10.91 28.65 
S124 5 -1, .99 -9.38 17.51 9 2.01 -13.93 12.12 
S126 13 -2, .08 -11.14 45.54 17 -4.19 -8.46 54.89 
S128 11 6, .42 -56.45 116.06 17 5.60 -55.95 117.47 
S129 10 2, .63 -14.45 15.16 10 8.23 -37.72 40.87 
S130 10 4. .99 -36.04 58.25 18 -2.00 -12.50 48.88 
S131 13 4, .87 -52.66 119.33 23 3.36 -41.20 93.76 
S132 11 3, .72 -40.60 94.43 15 3.06 -36.26 84.73 
S133 5 1, .43 -21.08 31.09 11 -1.40 -12.88 27.80 
S134 12 5 .03 -40.72 69.14 26 2.39 -29.86 64.36 
S135 10 -1 .09 -11.66 28.79 25 1.35 -19.03 36.27 
S136 5 -3 .63 -7.44 22.57 7 4.67 -23.58 25.42 
S137 14 -0 .73 -8.61 15.52 14 0.84 -11.43 14.44 
S138 36 2 .08 -22.65 46.24 28 2.88 -26.99 52.09 
S139 17 2 .20 -16.47 23.44 28 1.28 -11.01 16.39 
S140 18 2 .24 -16.20 25.41 34 1.31 -11.16 17.96 
S141 17 1 .28 -12.56 21.36 26 1.02 -11.18 17.33 
S142 14 2 .85 -21.29 37.32 33 0.62 -11.01 26.86 
S143 21 2 .83 -23.28 43.39 39 1.64 -15.55 30.79 
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Figure 1.1: MRC of Uppor Iowa River at Decorah (for winter), ID# 05387500 
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Rgure 1MRC of Upper Iowa River at Decorah (for summer), ID# 05387500 
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Figure 2.1: MRC of Upper Iowa River near Decorah (for winter), ID# 05388000 
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Figure 2J2: MRC of Upper Iowa River near Decorah (for summer), ID# 05388000 
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Figure 3.1: IMRC of Upper Iowa River near Dorcliester (for winter) 
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Figure 3.2: MRC of Upper Iowa River near Dorchester (for summer), ID# 05388250 
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Figure 4.1: MRC of Paint Creel< at Waten/ille (for winter), ID# 05388500 
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Figure 4.2: MRC of Paint Creel< at Waten/ille (for summer), ID# 05388500 
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Figure 5.1; MRC of Yellow River at Ion (for winter), ID# 05389000 
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Rgure 5.2: MRC of Yellow River at Ion (for summer), ID# 05389000 
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Figure 6.1: MRC of Mississippi River at McGregor (for winter), ID# 05389500 
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Figure 6.2: MRC of Mississippi River at McGregor (for summer), ID# 05389500 
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Figure 7.1: MRC of Turl<ey River at Spillville (for winter), ID# 05411600 
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Figure 7.2; MRC of Turkey River at Spillville (for summer), ID# 05411600 
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Figure 8.1; MRC of Turkey River at Elkader (for winter), ID# 05412000 
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Figure 8.2: MRC of Turkey River at Elkader (for summer), ID# 05412000 
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Figure 9.1: MRC of Turi<ey River at Garber (for winter), ID# 05412500 
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Figure 9.2; MRC of Turkey River at Garber (for summer), ID# 05412500 
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Figure 10.1: MRC of Little Maquoketa River near Durango (for winter), ID# 05414500 
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Figure 10.2: MRC of Little Maquoketa River near Durango (for summer), ID# 05414500 



www.manaraa.com

226 

1000 

900 

800 

700 

600 

500 

400 

300 

200 

100 

0 
0 5 10 15 20 25 30 

Time (days) 

Figure 11.1: MRC of Maquoketa River near Manchester (for winter), ID# 05417000 
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Figure 11.2: MRC of Maquoketa River near Manchester (for summer), ID# 05417000 
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Figure 12.1: MRC of Bear Creel< near Monmouth (for winter), ID# 05417700 
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Figure 12.2: MRC of Bear Creek near Monmouth (for summer), ID# 05417700 
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Rgure 13.1: MRC of North Fori< Maquoketa River at Fulton (for winter), ID# 05418450 
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Rgure 13.2: MRC of North Fork Maquoketa River at Fulton (for summer), ID# 05418450 
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Figure 14.1: MRC of Mississippi River at Clinton (forwinter), ID# 05420500 
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Figure 14.2: MRC of Mississippi River at Clinton (for summer), ID# 05420500 
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Figure 15.1; MRC of Wapsipinicon River near Elma (for winter), ID# 05420560 
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Rgure 15.2: MRC of Wapsipinicon River near Elma (for summer), ID# 05420560 
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Figure 16.1: IVIRC of Wapsipinicon River at Independence (for winter), ID# 05421000 
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Figure 16.2; MRC of Wapsipinicon River at Independence (for summer), ID# 05421000 
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Figure 17.1: MRC of Wapsipinicon River near Dewitt (for winter), ID# 05422000 
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Rgure 172: MRC of Wapsipinicon River near Dewitt (for summer), ID# 05422000 
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Figure 18.1: MRC of Crow Creek at Betlendotf (for winter), ID# 05422470 
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Figure 18.2: MRC of Crow Creek at Bettendorf (for summer), ID# 05422470 
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Figure 19.1: MRC of West Branch Iowa River near Klemme (for winter), ID# 05448500 
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Figure 19.2; MRC of West Branch Iowa River near Klemme (for summer), ID# 05448500 
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Figure 20.1; MRC of East Branch Iowa Rivernear Klemme (for winter), ID# 05449000 
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Figure 20.2: MRC of East Branch Iowa River near Klemme (for summer), ID# 05449000 
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Figure 21.1: MRC of Iowa River near Rowan (for winter), ID# 05449500 
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Rgure 21.2: MRC of Iowa River near Rowan (for summer), ID# 05449500 
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Figure 22.1: MRC of Iowa River at Marshalltown (for winter), ID# 05451500 
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Figure 22.2; MRC of Iowa River at Marshalltown (for summer), ID# 05451500 
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Figure 23.1: MRC of Timber Creek near Marshalltown (for winter), ID# 05451700 
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Rgure 23.2: MRC of Timber Creek near Marshalltown (for summer), ID# 05451700 
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Figure 24.1; MRC of Richland Creek near Haven (for winter), ID# 05451900 
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Figure 24.2: MRC of Richland Creek near Haven (for summer), ID# 05451900 



www.manaraa.com

240 

200 

180 

160 

140 

120 

100 

80 

60 

20 

0 5 10 15 20 25 30 35 40 
Time (days) 

Figure 25.1: MRC of Salt Creek near Elberon (for winter), ID# 05452000 
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Figure 25.2; MAC of Salt Creek near Elberon (for summer), ID# 05452000 
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Figure 26.1; MRC of Walnut Creek near Hartwick (for winter), ID# 05452200 
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Figure 265: MRC of Walnut Creek near Hartwick (for summer), ID# 05452200 
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Figure 27.1: MRC of Iowa River near Belle Plaine (for winter), ID# 05452500 
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Rgure 27.2: MRC of Iowa River near Belle Plaine (for summer), ID# 05452500 
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Figure 28.1: MRC of Big Bear Creel< at Ladota (for winter), ID# 05453000 
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Rgure 285: MRC of Big Bear Creek at Ladota (for summer), ID# 05453000 
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Figure 29.1; IMRC of Iowa River at Marengo (for winter), ID# 05453100 
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Figure 29.2: MRC of Iowa River at Marengo (for summer), ID# 05453100 
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Rgure 30.1: MRC of Rapid Creek near Iowa City (for winter), ID# 05454000 
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Rgure 30.2; MRC of RaFMd Creek near Iowa City (for summer), ID# 05454000 



www.manaraa.com

246 

160 

140 

120 

100 

•§ 

I q= 
E en 

80 

S. 
25 

60 

40 

0 5 10 15 20 25 30 35 40 45 
Time (days) 

Rgure 31.1: MRC of Clear Creek near Coralville (for winter), ID# 05454300 
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Rgure 31.2: MRC of Clear Creek near Coralville (for summer), ID# 05454300 
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Figure 32.1: MRC of Iowa River at Iowa City (for winter), ID# 05454500 
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Figure 32.2; MRC of Iowa River at Iowa City (for summer), ID# 05454500 
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Rgure 33.1: MRC of Ralston Creek at Iowa City (for winter), ID# 05455000 
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Figure 33.2; MRC of Ralston Creek at Iowa City (for summer), ID# 05455000 
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Figure 34.1: l\̂ RC of South Branch Ralston Creel< at Iowa City (for winter), ID# 05455010 
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Rgure 34.2: MRC of South Branch Ralston Creek at Iowa City (for summer), ID# 05455010 
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Figure 35.1: MRC of Old Mans Creek near Iowa City (for winter), ID# 05455100 
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Rgure 355; MRC of Old Mans Creek near Iowa City (for summer), ID# 05455100 
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Figure 36.1: MRC of English River at Kalona (for winter). ID# 05455500 
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Figure 36.2: MRC of English River at Kalona (for summer), ID# 05455500 
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Figure 37.1: MRC of Iowa River near LoneTree (for winter), ID# 05455700 
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Rgure 37.2; K/IRC of Iowa River near Lone Tree (for summer), ID# 05455700 



www.manaraa.com

253 

2500 

2000 

1500 

1000 

500 

0 
5 20 0 10 15 25 30 

Time (days) 

Figure 38.1: MRC of Cedar River at Charles City (for winter), ID# 05457700 
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Figure 38.2: MRC of Cedar River at Charles City (for summer), ID# 05457700 
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Figure 39.1: l\̂ RC of Uttle Cedar River near Ionia (for winter), ID# 05458000 
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Figure 39.2: MRC of Little Cedar River near Ionia (for summer), ID# 05458000 
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RguiB 40.1: MRC of Cedar River at Janesville (for winter), ID# 05458500 
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Rgure 405; MRC of Cedar River at Janesville (for summer), ID# 05458500 
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Figure 41.1; MRC of West Fork Cedar River at Finchford (for winter), ID# 05458900 
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Figure 41.2; MRC of West Fork Cedar River at Finchford (for summer), ID# 05458900 
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Figure 42.1: MRC of Shell Rock River near Northwood (for winter), ID# 05459000 
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Figure 42.2: MRC of Shell Rock River near Northwood (for summer), ID# 05459000 
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Figure 43.1: MRC of Winnebago River at Mason City (for winter), ID# 05459500 
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Figure 43.2: MRC of Winnebago River at Mason City (for summer), ID# 05459500 
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Figure 44.1: MRC of Shell Rock River at Marble Rock (for winter), ID# 054605CO 
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Figure 44.2: MRC of Shell Rock River at Marble Rock (for summer), ID# 05460500 
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Figure 45.1: MRC of Shell Rock River at Shell Rock (for winter), ID# 05462000 
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Figure 45.2: MRC of Shell Rock River at Shell Rock (for summer), ID# 05462000 
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Figure 46.1: MRC of Beaver Creek at New Hartford (for winter), ID# 05463000 
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Figure 46.2: MRC of Beaver Creek at New Hartford (for summer), ID# 05463000 
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Figure 47.1: MRC of Blaol< Hawl< Creek at Hudson (for winter), ID# 05463500 
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Figure 47.2: MRC of Black Hawk Creek at Hudson (for summer), ID# 05463500 



www.manaraa.com

263 

16000 

14000 

12000 

10000 
2* U 

S 8000 
E 
CO 

CO 
6000 

4000 

2000 

5 10 15 0 20 25 30 
Time (days) 

Rgure 48.1: MRC of Cedar River at Waterioo (for winter), ID# 05464000 
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Rgure 48.2; MRC of Cedar River at Waterloo (for summer), ID# 05464000 
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Figure 49.1: MRC of Fouimile Creek near Lincoln (for winter), ID# 05464130 
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Figure 49.2: MRC of Fourmile Creek near Lincoln (for summer), ID# 05464130 
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Figure 50.1: IVIRC of Fourmile Creek nearTraer (for winter), ID# 05464137 
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Figure 50.2: MRC of Fourmile Creek near Traer (for summer), ID# 05464137 
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Figure 51.1; MRC of Cedar River at Cedar Rapids (for winter), ID# 05464500 
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Figure 51.2: MRC of Cedar River at Cedar Rapids (for summer), ID# 05464500 
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Figure 52.1: MRC of Prairie Creek at fairfax (for winter), ID# 05464640 

180 

160 

140 

120 

100 

40 

6 2 4 12 0 8 10 14 18 16 
Time (days) 

Figure 52.2; MRC of Prairie Creek at fairfax (for summer), ID# 05464640 
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FigutB 53.1; MRC of Cedar River near Conesville (for winter), ID# 05465000 
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Figure 53.2: MRC of Cedar River near Conesville (for summer), ID# 05465000 
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Figure 54.1: MRC of Iowa River at Wapello (for winter), ID# 05465500 
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Figure 54.2: MRC of Iowa River at Wapello (for summer), ID# 05465500 
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Figure 55.1: MRC of South Skunk River near Ames (for winter), ID# 05470000 
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Figure 55.2; MRC of South Skunk River near Ames (for summer), ID# 05470000 
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Figure 56.1: MRC of Squaw Creek at Ames (for winter), ID# 05470500 
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Figure 56.2: MRC of Squaw Creek at Ames (for summer), ID# 05470500 



www.manaraa.com

272 

2500 

2000 

1500 

1000 

500 

0 
0 5 10 15 20 25 30 35 40 45 

Time (days) 

Figure 57.1: MRC of South Skunk River below Squaw Creek near Ames (for winter). ID# 05471000 
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Figure 57.2: MRC of South Skunk River below Squaw Creek near Ames (for summer), ID# 05471000 
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Figure 58.1: MRC of Indian Creek near Mingo (for winter), ID# 05471200 
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Figure 58.2: MRC of Indian Creek near Mingo (for summer), ID# 05471200 
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Rgure 59.1: MRC of South Skunk River near Oskaloosa (for winter), ID# 05471500 
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Figure 59.2: MRC of South Skunk River near Oskaloosa (for summer), ID# 05471500 
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Figure 60.1: MRC of North Skunk RivernearSigoumey (forwinter), ID# 05472500 
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Figure 60.2; MRC of North Skunk River near Sigoumey (for summer), ID# 05472500 
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Figure 61.1: MRC of Skunk River at Coppock (for winter), ID# 05473000 
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Figure 61.2: MRC of Skunk River af Coppock (for summer), ID# 05473000 
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Figure 62.1: MRC of Cedar Creek near Oakland Mills (for winter), ID# 05473400 
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Figure 62.2; MRC of Cedar Creek near Oakland Mills (for summer), ID# 05473400 
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Figure 63.1: MRC of Big Creek near Mount Pleasant (for winter). ID# 05473500 
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Figure 63.2: MRC of Big Creek near Mount Pleasant (for summer), ID# 05473500 
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Figure 64.1: MRC of Skunk River at Augusta (for winter), ID# 05474000 
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Figure 64.2: MRC of Skunk River at Augusta (for summer), ID# 05474000 
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Rgure 65.1: MRC of Mississippi River at Keol<ul< (for winter), ID# 05474500 
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Figure 65.2; MRC of Mississippi River at Keokuk (for summer), ID# 05474500 
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Figure 66.1: MRC of Des Moines River at Humboldt (for winter), ID# 05476750 
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Figure 66.2: MRC of Des Moines River at Humboldt (for summer), ID# 05476750 
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Figure 67.1: l\^RC of East Forl< Des Moines River at Dal<ota City (for winter), ID# 05479000 
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Figure 67.2: MRC of East Fork Des Moines River at Dakota City (for summer), ID# 05479000 
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Figure 68.1: MRC of Lizard Creek near Clare (for winter), ID# 05480000 
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Figure 68.2: MRC of Lizard Creek near Clare (for summer), ID# 05480000 
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Figure 69.1: MRC of Des Moines River at Fort Dodge (for winter), ID# 05480500 
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Figure 69.2; MRC of Des Moines River at Fort Dodge (for summer), ID# 05480500 
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Figure 70.1: MRC of Boone River near Webster City (for winter), ID# 05481000 
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Figure 70.2: MRC of Boone River near Webster City (for summer), ID# 05481000 
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Figure 71.1: MRC of Des Moines River near Stratford (for winter), ID# 05481300 
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Figure 71.2: MRC of Des Moines Rivernear Stratford (forsummer). ID# 05481300 
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Figure 72.1: MRC of Beaver Creek near Grimes (for winter), ID# 05481950 
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Figure 72.2: MRC of Beaver Creek near Grimes (for summer), ID# 05481950 
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Figure 73.1; MRC of Des Moines River at Des Moines (for winter), ID# 05482000 
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Figure 73.2; MRC of Des Moines River at Des Moines (for summer), ID# 05482000 
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Figure 74.1; MRC of Big Cedar Creei< near Varina (for winter), ID# 05482170 
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Figure 74.2; MRC of Big Cedar Creek near Varina (for summer), ID# 05482170 
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Figure 75.1: MRC of North Raccoon River near Sac City (for winter), ID# 05482300 
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Figure 75.2: MRC of North Raccoon River near Sac City (for summer), ID# 05482300 
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Figure 76.1; MRC of North Raccoon River near Jefferson (for winter), ID# 05482500 
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Figure 76.2: MRC of North Raccoon River near Jefferson (for summer), ID# 05482500 



www.manaraa.com

292 

80 

60 

40 

30 

20 

0 5 10 15 20 25 30 35 40 45 50 
Time (days) 

Figure 77.1: MRC of East Fork Hardin Creek near Churdan (for winter), ID# 05483000 
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Figure 77.2: MRC of East Fork Hardin Creek near Churdan (for summer), ID# 05483000 
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Figure 78.1: MRC of Middle Raccoon River at Panora (for winter), ID# 05483600 
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Figure 78,2: MRC of Middle Raccoon River at Panora (for summer), ID# 05483600 
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Figure 79.1: MRC of South Raccoon River at Redfield (for winter), ID# 05484000 
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Figure 79.2; MRC of South Raccoon River at Redfield (for summer), ID# 05484000 
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Figure 80.1: MRC of Raccoon River at Van Meter (for winter), ID# 05484500 
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Figure 80.2: MRC of Raccoon River at Van Meter (for summer), ID# 05484500 
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Figure 81.1: MRC of Walnut Creek at Des Moines (for winter), ID# 05484800 
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Figure 81.2: MRC of Walnut Creek at Das Moines (for summer), ID# 05484800 
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Figure 82.1: MRC of Des Moines R. below Raccoon R. at Des Moines (for winter), ID# 05485500 
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Figure 82.2; MRC of Des Moines R. below Raccoon R. at Des Moines (for summer), ID# 05485500 
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Figure 83.1: MRC of Fourmile Creek at Des Moines (for winter), ID# 05485640 
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Figure 83.2: MFIC of Fourmile Creek at Des Moines (for summer), ID# 05485640 
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Figure 84.1: MRC of North River near Norwalk (for winter), ID# 05486000 
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Figure 84.2: MRC of North River near Norwalk (for summer), ID# 05486000 
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Figure 85.1: MRC of Middle River near Indianola (for winter), ID# 05486490 
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Figure 85.2: MRC of Middle River near Indianola (for summer), ID# 05486490 
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Figure 86.1: MRC of South River near Ackworth (for winter). ID# 05487470 
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Figure 86.2; MRC of Soufri River near Ackworth (for summer), ID# 05487470 
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Figure 87.1: MRC of White Breast Creel< near Dallas (for winter), ID# 05487980 
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Figure 87.2: MRC of White Breast Creek near Dallas (for summer), ID# 05487980 
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Figure 88.1: MRC of White Breast Creel< near Knoxville (for winter), ID# 05488000 
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Figure 88.2: MRC of White Breast Creek near Knoxville (for summer), ID# 05488000 
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Figure 89.1: MRC of Des Moines Rivernear Tracy (for winter), ID# 05488500 
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Figure 89.2: MRC of Des Moines River near Tracy (for summer), ID# 05488500 
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Figure 90.1: MRC of Cedar Creek near Bussey (for winter), ID# 05489000 

180 

160 

140 

120 

100 

80 

40 

20 

5 0 10 15 20 25 
Time (days) 

Figure 90.2: MRC of Cedar Creek near Bussey (for summer), ID# 05489000 
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Figure 91.1: MRC of Des Moines River at Ottumwa (for winter), ID# 05489500 
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Figure 91.2; MRC of Des Moines River at Otfumwa (for summer), ID# 05489500 
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Rgure 92.1: MRC of Des Moines Fiiverat Keosauqua (forwinter), ID# 05490500 
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Figure 92.2: MRC of Des Moines River at Keosauqua (for summer), ID# 05490500 
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Figure 93.1: MRC of Sugar Creek near Keokuk (for winter), ID# 05491000 

45 

40 

35 

25 

20 

5 0 10 15 20 25 30 
Time (days) 

Figure 93,2: MRC of Sugar Creek near Keokuk (for summer), ID# 05491000 
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Figure 94.1: MRC of Fox River at Bloomfield (for winter), ID# 05494300 
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Figure 94.2: MRC of Fox River at Bloomfield (for summer), ID# 05494300 
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Figure 95.1: MRC of Fox River at Cantril (for winter), ID# 05494500 
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Figure 95.2; MRC of Fox River at Cantril (for summer), ID# 05494500 
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Figure 96.1: MRC of Rock River at Rock Rapids (forwinter), ID# 06483270 
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Figure 96.2: MRC of Rock River at Rock Rapids (for summer), ID# 06483270 
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Figure 97.1: MRC of Rock River near Rock Valley (for winter). ID# 06483500 
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Figure 97.2; MRC of Rock River near Rock Valley (for summer), ID# 06483500 
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Figure 98.1: MRC of Big Sioux River at Akron (for winter), ID# 06485500 

2500 

2000 

2" 1500 o 
5 
E 

1000 

500 

0 5 10 15 20 25 30 35 40 45 
Time (days) 

Figure 98.2: MRC of Big Sioux River at Akron (for summer), ID# 06485500 
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Figure 99.1: MRC of Missouri River at Sioux City (for winter), ID# 06486000 
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Figure 99.2: MRC of Missouri River at Sioux City (for summer), ID# 06486000 
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Figure 100.1; MRC of Perry Creels at 38th street, Sioux City (for winter), ID# 06600000 
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Figure 100.2: MRC of Perry Creek at 38th street, Sioux City (for summer), ID# 06600000 
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Figure 101.1; MRC of Floyd River at Alton (for winter), ID# 06600100 
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Figure 101.2: MRC of Floyd River at Alton (for summer), ID# 06600100 
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Figure 102.1: MRC of West Branch Floyd River near Struble (for winter), ID# 06600300 
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Figure 102.2: MRC of West Branch Floyd River near Struble (for summer), ID# 06600300 
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Figure 103.1: MRC of Floyd River at James (for winter), ID# 06600500 
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Figure 103.2: MRC of Floyd River at James (for summer), ID# 06600500 
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Figure 104.1: MRC of West Fork Ditch at Homick (for winter), ID# 06602020 
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Figure 104.2: MRC of West Fork Ditch at Homick (for summer), ID# 06602020 
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Figure 105.1; MRC of Monona-Harrison Ditch nearTurin (for winter), ID# 06602400 
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Figure 105.2: MRC of Moriona-Harrison Ditch nearTurin (for summer), ID# 06602400 
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Figure 106.1: MRC of Oclieyedan River near Spencer (for winter), ID# 06605000 
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Figure 106.2: MRC of Ocheyedan River near Spencer (for summer), ID# 06605000 
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Figure 107.1: lUlRC of Utfle Sioux River at Gillett Grove (for winter), ID# 06605600 

3000 

2500 

2000 

1500 

1000 

500 

0 
0 10 20 30 40 50 60 

Time (days) 

Figure 107.2; MRC of Little Sioux River at Gillett Grove (for summer), ID# 06605600 
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Figure 108.1: MRC of Uttle Sioux River at Linn Grove (for winter), ID# 06605850 
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Figure 108.2: MRC of Little Sioux River at Linn Grove (for summer), ID# 06605850 
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Figure 109.1: MRC of Little Sioux River at Correctionville (for winter), ID# 06606600 

2500 

2000 

1500 

1000 

500 

0 
0 10 20 30 40 50 60 

Time (days) 

Figure 109.2: MRC of Little Sioux River at Correctionville (for summer), ID# 06606600 
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Figure 110.1: MRC of Utile Sioux River near Kenneiaec (for winter), ID# 06606700 
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Figure 110.2: MRC of Little Sioux River near Kennebec (for summer), ID# 06606700 
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Rgure 111.1: MRC of Odebolt Creek near Arthur (for winter), ID# 06607000 
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Figure 111.2; MRC of Odebolt Creek near Arthur (for summer), ID# 06607000 
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Figure 112.1: MRC of Maple River at Mapleton (forv\^inter), ID# 06607200 
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Figure 112.2: MRC of Maple River at Mapleton (for summer), ID# 06607200 
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Figure 113.1: MRC of Little Sioux River nearTurin (for winter), ID# 06607500 
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Figure 113.2: MRC of Little Sioux River nearTurin (for summer), ID# 06607500 
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Rgure 114.1: MRC of Soldier River at Pisgah (for vvinter), ID# 06608500 
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Figure 114.2; MRC of Soldier River at Pisgah (for summer), ID# 06608500 
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Figure 115.1: MRC of Boyer River at Logan (for winter), ID# 06609500 
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Figure 115.2: MRC of Boyer River at Logan (for summer), ID# 06609500 ! 
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Figure 116.1: MRC of Mosquito Creek nearEariing (for winter). ID# 06610520 
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Figure 116.2: MRC of Mosquito Creek near Eatling (for summer), ID# 06610520 
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Figure 117.1: MRC of Waubonsie Creek near Bartlett (for winter), ID# 06806000 
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Figure 117.2; MRC of Waubonsie Creek near Bartlett (for summer), ID# 06806000 
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Figure 118.1; MRC of West Nishnabotna River at Hancock (for winter), ID# 06807410 
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Figure 118.2; MRC of West Nishnabotna River at Hancock (for summer), ID# 06807410 
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Figure 119.1: iVIRC of West Nishnabotna River at Randolph (for winter), ID# 06808500 
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Figure 119.2; MRC of West Nishnabolna River at Randolph (for summer). ID# 06808500 
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Figure 120.1: MRC of Davids Creek near Hamlin (for winter), ID# 06809000 
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Figure 120.2: MRC of Davids Creek near Hamlin (for summer), ID# 06809000 
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Figure 121.1: MRC of East Nishnabotna River near Atlantic (for winter), ID# 06809210 
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Figure 121.2: MRC of East Nishnabotna River near Atlantic (for summer). ID# 06809210 
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Rgute 122.1: MRC of East Nishnabotna River at Red Oal< (for winter), ID# 06809500 
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Figure 122.2: MRC of East Nishnabotna River at Red Oak (for summer). ID# 06809500 



www.manaraa.com

338 

2500 

2000 

1500 u 
I 
1 (U 

1000 CO 

500 

10 0 5 15 20 35 25 30 40 45 
Time (days) 

Figure 123.1; MRC of Nishnabotna River above Hamburg (for winter), ID# 06810000 
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Figure 123.2; MRC of Nishnabotna River above Hamburg (for summer), ID# 06810000 
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Rgure 124.1: MRC of Tarkio River at Stanton (for winter), ID# 06811840 
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Figure 124.2: MRC of Tarkio River at Stanton (for summer), ID# 06811840 
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Figure 125.1: MRC of Nodaway River at Clarinda (for winter), ID# 06817000 
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Figure 125.2; fkrtRC of Nodaway River at Clarinda (for summer), ID# 06817000 
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Figure 126.1: MRC of Platte River near Diagonal (for winter), ID# 06818750 
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Figure 126.2: MRC of Platte River near Diagonal (for summer), ID# 06818750 
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Figure 127.1: MRC of East Fork 102 River at Bedford (for winter), ID# 06819190 
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Figure 127.2: MRC of East Fork 102 River at Bedford (for summer), ID# 06819190 
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Figure 128.1; MRC of Ell< Creek near Decatur City (for winter), ID# 06897950 
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Figure 128.2; MRC of Elk Creek near Decatur City (for summer), ID# 06897950 
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Figure 129.1; MRC of Thompson River at Davis City (for winter), ID# 06898000 
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Figure 129.2: MRC of Thompson River at Davis City (for summer). ID# 06898000 
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Figure J 30.1: MRC of Weldon River near Leon (for winter), ID# 06898400 
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Rgure 130.2: MRC of Weldon River near Leon (for summer), ID# 06898400 
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Figure 131.1: MRC of Chariton River near Chariton (for winter), ID# 06903400 
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Rgure 131.2: MRC of Chariton River near Chariton (for summer), ID# 06903400 
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Figure 132.1: MRC of South Fork Chariton River near Promise City (for winter), ID# 06903700 
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Rgure 132.2: MRC of South Forl< Chariton River near Promise City (for summer), 10# 06903700 
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Figure 133.1: MRC of Chariton River near Rathbun (for winter), ID# 06903900 
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Figure 133.2; MRC of Chariton River near Ralhbun (for summer), ID# 06903900 
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Figure 134.1: MRC of Chariton Rivernear Centerville (for winter), ID# 06904000 
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Figure 134.2: MRC of Chariton River near Centerville (for summer), ID# 06904000 
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1. Program RECESS 

2. Program FORMAT 

3. Program REGRESS 
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PROGRAM RECESS 
C BY AL RUTLEDGE, USGS, RICHMOND, VA 
C MODIFIED BY AHMAD A. RAAII 

COMMON/BIG/Q(90,12,31) 
COMMON/BIG/EST(90,12,31) 
C0MM0N/BIG/Q1D(33000) 
COMMON/BIG/lYRlD(33000) 
COMMON/BIG/IMOID(33000) 
COMMON/BIG/IDAID(33000) 
REAL XX(2000), YY(2000), ZZ(2000) 
REAL FLOW(60), QLOG(60) 
INTEGER INDICAT(2000) 
INTEGER lYRC60), IMO(60), IDA(60) 
REAL Q 
REAL QID 
REAL QLOGMAX, QLOGMIN, MXLOGQC 
INTEGER lYRlD 
INTEGER IMOID 
INTEGER IDAID 
INTEGER PICKM0(12) 
CHARACTER*1 EST 
CHARACTER*16 INFILE 
CHARACTER*80 PICK 
CHARACTER*80 YESNO 
CHARACTER*! SEASON 
REAL QMAX, QMIN, KMAX, KMIN, KMED, DA 
CHARACTER*8 STANUM 
CHARACTER*? LINE 
CHARACTER*16 FNAME 
CHARACTER*29 STANAME 
CHARACTER*! BLANK(80) 
REAL XMEANAR(50), YMEANAR(50), COEF1AR(50), COEF2AR{50) 
REAL XMNARAY(50), COFARAY(50), X(50), Y(50), K(50), DUMMY(50) 
INTEGER LAT, LONG 
INTEGER IMINAR(50), IMAXAR(50), IYRAR(50),IMOAR{50),IDAAR{50) 
INTEGER IPICK(50), ORIGNO(50) 
OPEN (UNIT=10,F1LE='outrecl',STATUS="UNKNOWN') 
OPEN (UNIT=11, FILE= ' outrec2 ' , STATUS=' UNKNOVJN' ) 
OPEN (UNIT=13,FILE='outrec3',STATUS='UNKNOWN') 
OPEN (UNIT=12,FILE='outrec',STATUS='UNKNOWN') 

1 READ (12,21,END=2) 
GO TO 1 

2 CONTINUE 
3 READ {13,21,END=4) 
GO TO 3 

4 CONTINUE 
5 FORMAT (2I6,3F11.2,1F8.2) 
WRITE (*,*) 'THIS PROGRAM READS A DAILY-VALUES FILE OF 
WRITE (*,*) "STREAMFLOW, EXTRACTS PERIODS OF CONTINUOUS 
WRITE (*,*) 'STREAMFLOW RECESSION, SELECTS (WITH THE HELP OF ' 
WRITE (*,*) 'THE USER) RECESSION SEGMENTS THAT ARE INDICATIVE ' 
WRITE (*,*) 'OF GROUND-WATER DISCHARGE, AND FORMULATES A 
WRITE (*,*) 'MASTER RECESSION CURVE (MRC). THE MRC CAN BE 
WRITE (*,*) 'NONLINEAR. 
WRITE (*,*) 'CODES FOR MISSING DATA ON THE DAILY-VALUES FILE: ' 
WRITE (*,*) '-99:DATE IS WITHIN YEARS OF RECORD, BUT DATA MISSING 
WRITE (*,*) '-999: DATE IS BEFORE FIRST YEAR OF RECORD 
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WRITE (* , *) 
WRITE (*,*) 

-9999: NONEXISTENT DATE 

C 
C-

10 

11 

12 

INITIALIZE VARIABLES 
DO 10 IYEAR=1,90 
DO 10 IMONTH=l,12 
DO 10 IDAY=1,31 
Q(lYEAR,IMONTH,IDAY)=-999.0 
DO 11 1=1,12 
PICKMO(I)=0 
DO 12 1=1,80 
BLANK(I)= " • 
11= 1 

XX(II)= -99.0 
YY(II)= -99.0 
NMRECES=0 
QLOGMAX=0.0 
QLOGMIN=10.0 

15 FORMAT (113, 2F9.3, 9X, 42A1) 
16 FORMAT (1I6,1I7,2X,A8,1F8.0,2X,A16,3X,A29) 
17 FORMAT (A16,A1,1I4,,1I4,1I3,3F6.1,1F6.3,1F9.4,2F10.4) 
18 FORMAT (A26, 1F7.1, 33X, 1F7.1) 
19 FORMAT (1F10.5,1F15.3,3F8.1,10X,1I6,2I3) 
20 FORMAT (1112, 2F10.4, 1112, 318) 
21 FORMAT (A7) 
22 FORMAT (2X,I4) 
23 FORMAT (1F12.0) 
24 FORMAT (80X) 
25 FORMAT (14) 
26 FORMAT (5X, 12(1F9.0,lAl)) 
27 FORMAT (12F10.2) 
28 FORMAT (116, 213, 8F10.3) 
29 FORMAT (116, 2I3, 8(1F10.3,1A1) ) 

C 
C 
C 

READ THE DV FILE OF STREAMFLOW: 

WRITE (*,*) 'GIVE THE NAME OF ORIGINAL DV FILE OF STREAMFLOW: 
READ (*,'(A)•} INFILE 
INFILE= 'z"//INFILE 
OPEN (UNIT=9, FILE=INFILE,STATUS='OLD') 
IYEAR=1 

30 READ (9,21) LINE 
IF( LINE.NE. 'MAXIMUM'.AND.LINE.NE.'MINIMUM') THEN 

GO TO 30 
END IF 

IF(LINE.EQ.'MAXIMUM') THEN 
READ (9,23) QMAX 
GO TO 30 
END IF 

READ (9,23) QMIN 
40 READ (9,25) lYEAR 

IF (IYEAR.NE.9999) THEN 
WRITE (*,*) lYEAR 
IYEAR=IYEAR-1910 
DO 50 IDAY=1,31 

50 READ (9,26) (Q(IYEAR,IMONTH,IDAY), 
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$ EST(lYEAR,IMONTH,IDAY), IM0NTH=1,12) 

GO TO 40 
END IF 

CLOSE (9,STATUS='KEEP•) 
C 
C 
C 

READ LIST FILE GIVING STATION PROPERTIES: 

WRITE (*,*) 'READING FILE NAMED GAGING' 
OPEN (UNIT=8,FILE='gaging') 

80 READ(8,16) LAT,LONG,STANUM,DA,FNAME,STANAME 
IF(FNAME.NE.XNFILE) GO TO 80 
WRITE (*,*) 'STATION NAME:', STANAME 
WRITE {*,*) 'DRAINAGE AREA:', DA 
CLOSE (8,STATUS='KEEP') 
WRITE (*,*) ' ' 

100 CONTINUE 
C 
C OBTAIN USER SPECIFICATIONS ABOUT RECESSION PERIODS DESIRED: 

WRITE (*,*) 'START IN WHICH YEAR? ' 
READ (*,*) lYEARST 
WRITE (*,*) 'END IN WHICH YEAR?' 
READ (*,*) lYEAREN 
IYEARST= IYEARST-1910 
IYEAREN= IYEAREN-1910 
WRITE (*,*) 'ONLY SELECT RECESSIONS BEGINNING IN PARTICULAR ' 
WRITE (*,*) 'MONTHS. ENTER NUMBER OF MONTHS SELECTED:' 
READ (*,*) NMONTHS 
IF (NMONTHS.EQ.12) THEN 

DO 120 1=1,12 
120 PICKMO(I)=I 

ELSE 
WRITE (*,*) 'ENTER MONTHS:' 
DO 130 1=1,NMONTHS 

130 READ (*,*) PICKMO(I) 
END IF 

135 CONTINUE 
WRITE (*,*) 'ENTER A SINGLE LETTER TO INDICATE WHAT SEASON, IF ' 
WRITE (*,*) 'ANY, THIS CORRESPONDS TO {s=SUMMER, •w=WINTER, OR' 
WRITE {*,*) •n=NEITHER' 
READ (*,'(A)') SEASON 
IF(SEASON.NE.'s'.AND.SEASON.NE.'w'.AND.SEASON.NE.'n') THEN 

WRITE (*,*) 'OPTION NOT RECOGNIZED.' 
GO TO 135 

END IF 
WRITE (*,*) 'HOW MANY DAYS OF RECESSION ARE REQUIRED?' 
READ {*,*) IFARCRI 

WRITE (11,*) ' OUTPUT FILE "0UTREC2" (UNIT 11) FROM PROGRAM RECE 

C 

C 
C 
C 

WRITE HEADINGS IN OUTPUT FILES; 

$SS: • 
WRITE (11,*) ' 
WRITE (11,*) ' 

WRITE (10,*) • FILE OUTRECl (UNIT 10), OUTPUT OF RECESS.F77 ' 

INPUT DATA FILE FOR THIS SESSION: ', INFILE 

t 
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WRITE (10,*) 
WRITE (13,*) 

INPUT FILE = INFILE 

WRITE (13,*) 
WRITE (10,*) 
WRITE (10,*) 
WRITE (10,*) 

INPUT FILE FOR FOLLOWING SELECTIONS = 
START = •, IYEARST+1910 
END = •, IYEAREN+1910 
DAYS OF RECESSION REQUIRED FOR DETECTION= 

INFILE 

$ IFARCRI 
WRITE (10,*) ' MONTHS SELECTED: 
DO 140 1=1, NMONTHS 

140 WRITE (10,*) • PICKMO(I) 
WRITE (10,*) • • 
WRITE (10,*) • 

$ . 
WRITE (10,*) • 
WRITE (10,*) • LOG Q 

$ DATE OF PEAK ' 
WRITE (10,*) ' (MEAN) 
$ (yr, mo, d) • 
WRITE (13,*) ' 
WRITE (13,*) • LOG Q 
$ DATE OF PEAK ' 
WRITE (13,*) • (MEAN) 

$ (yr, mo, d) ' 

RECESSION PERIODS INITIALLY SELECTED: 
SLOPE TIME SINCE PEAK 

("dT/LOG CYC) (START)(MIDDLE)(END) 

RECESSION PERIODS INITIALLY SELECTED: 
SLOPE TIME SINCE PEAK 

(-dT/LOG CYC) (START)(MIDDLE)(END) 

C 
C 
C 

ASSIGN VALUES TO 1-DIMENSIONAL ARRAYS OF DISCHARGE AND DATE: —-

ICOUNT= 0 
DO 180 IYEAR= lYEARST, lYEAREN 
DO 180 IMONTH= 1,12 
DO 180 IDAY= 1, 31 

SFLOW= Q(lYEAR,IMONTH,IDAY) 
IF(SFLOW.EQ.-99.OR.SFLOW.EQ.-999.OR.SFL0W.EQ.-9999) GO TO 180 
ICOUNT= ICOUNT + 1 
Q1D(IC0UNT)= SFLOW 
IYR1D(ICOUNT)= lYEAR 
IMOID(ICOUNT)= IMONTH 
IDAID(ICOUNT)= IDAY 

180 CONTINUE 
IIMAX= 365* (1 + lYEAREN 
IF(QMIN.LT.0.001) THEN 

WRITE (* 
WRITE (* 
WRITE (* 
WRITE (* 
READ (*,*) 

END IF 
XLGQMAX= LOG(QMAX) 
XLGQMIN= LOG(QMIN) 
XLMXOLD= XLGQMAX 
XLMNOLD= XLGQMIN 

*) 

*) 

*) 

*) 

lYEARST) 

'FOR THIS STATION, THE MINIMUM DISCHARGE IS ZERO. 
•TO AVOID PROGRAM TERMINATION DUE TO PROBLEMS ' 
'WITH THE LOG FUNCTION, ENTER A SMALL POSITIVE' 
'NUMBER FOR MINIMUM DISCHARGE ON GRAPHICS: ' 
QMIN 

/ 2.3025851 
/ 2.3025851 

C 
C 
C 

LOCATE A PEAK: 

IC0UNT=1 
200 ICOUNT= ICOUNT + 1 

IF (ICOUNT.GT. UMAX) GO TO 250 
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IF(lYRlD(ICOUNT)-GT.IYEAREN) GO TO 250 
OK=0 
DO 205 1=1,12 

205 IF{IMOID(ICOUNT).EQ.PICKMO(I)) 0K=1 
IF(OK.EQ.O) GO TO 200 
IF(QID(ICOUNT).LE.QID(ICOUNT-1).OR.QlD(ICOUNT).LE.QID(ICOUNT+1)) 
# GO TO 200 
IPEAK= ICOUNT 
OK=l 

C 
C ANALYZE THE RECESSION AFTER THE PEAK: 
C 
210 ICOUNT= ICOUNT+1 

IF (ICOUNT.GT. UMAX) GO TO 250 
IF (INT(100*Q1D(ICOUNT)).GT.INT(100*Q1D(ICOUNT-1))) OK=0 
IHOWFAR= ICOUNT-IPEAK-1 
IF (OK.EQ.l) GO TO 210 
IF (IHOWFAR.LT.IFARCRI.AND.OK.EQ.O) THEN 

ICOUNT= ICOUNT-1 
GO TO 200 
END IF 

IF (IHOWFAR.GE.IFARCRI.AND.OK.EQ.O) THEN 
DO 215 IT= 1,60 

FLOW(IT)= 0.0 
QLOG(IT)= -99.9 
IYR(IT)=0 
IMO(IT)=0 
IDA(IT)=0 

215 CONTINUE 
NUM= ICOUNT-IPEAK-1 
IF(NUM.GT.60) THEN 

NUM=60 
ICOUNT= IPEAK+60 

END IF 
IMIN=1 
IMAX=NUM 
DO 220 IT=1,NUM 

1= IT+IPEAK 
FLOW(IT)= QID(I) 
IF(Q1D(I).EQ.0.0) THEN 

QLOG(IT)= -88.8 
ELSE 
QLOG(IT)= L0G(Q1D(I)) / 2.3025851 

END IF 
iyR(IT)= lYRlD(I) + 1910 
IMO(IT)= IMOID(I) 
IDA(IT)= IDAID(I) 

220 CONTINUE 
WRITE (*,*) • • 
WRITE (*,*) ' ' 
WRITE (*,*) • 

WRITE(*,*) 'NUMBER OF RECESSION PERIODS USED SO FAR = 
NMRECES 

WRITE(*,*) 'DATE OF NEW PEAK =', lYRlD(IPEAK)+1910, 
IMOID(IPEAK), IDAID(IPEAK) 

WRITE(*,*) 'PERIOD OF SUBSEQUENT RECESSION (DAYS) =', NUM 
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230 CONTINUE 

C 
C OBTAIN OPTION FROM USER: 
C 

WRITE (*,*) 'OPTIONS: g or g2:graphical, t or t2:tabular, c: 
$ choose first+last days to use,' 

WRITE (*,*) 'e:choose extremes for log q, o:go back to old e 
$xtremes for log q,' 

WRITE (*,*) •a:advance to next recession, rzperform regressi 
$on, store results in memory,' 

WRITE {*,*) 'and advance to next recession, b: go back to or 
$iginal time limits, q: quit' 

READ (*,•(A)•) PICK 
IF (PICK.EQ.'f.OR.PICK.EQ.'t2') THEN 

CALL TABLE(QLOG,FLOW,lYR,IMO,IDA,IPEAK,IMIN,IMAX,PICK) 
GO TO 230 

ELSEIF(PICK.EQ.'g'.OR.PICK.EQ.'g2') THEN 
CALL GRAPH (QLOG, FLOW, lYR, IMO, IDA, IPEAK, IMIN, IMAX, 

$ XLGQMAX,XLGQMIN,PICK) 
GO TO 230 

ELSEIF(PICK.EQ.'c') THEN 
WRITE (*,*) 'ENTER FIRST AND LAST DAY TO USE ********** 

$** enter NUMBERS only! ***********> 
READ (*,*) IMIN 
READ {*,*) IMAX 
GO TO 230 ; 

ELSEIF(PICK.EQ.•b') THEN 
IMIN= 1 
IMAX= ICOUNT-IPEAK-1 
GO TO 230 

ELSEIF(PICK.EQ.'a') THEN 
ICOUNT= ICOUNT-1 
GO TO 200 

ELSEIF(PICK.EQ.'o') THEN 
XLGQMIN= XLMNOLD 
XLGQMAX= XLMXOLD 
GO TO 230 

ELSEIF{PICK.EQ.'e•) THEN 
WRITE (*,*) 'ENTER MIN AND MAX VALUE FOR LOG Q' 
READ (*,*) XLGQMIN 
READ (*,*) XLGQMAX 
GO TO 230 

ELSEIF (PICK.EQ.'r') THEN 

NMRECES= NMRECES+1 
IF(NMRECES.GT.50) THEN 

WRITE (*,*) 'YOU HAVE ANALI2ED THE MAXIMUM NUMBER' 
WRITE (*,*) 'OF RECESSION PERIODS.• 
NMRECES= NMRECES-1 
GO TO 250 
END IF 

1=0 

IF(IM2^X-IMIN.GT.49) THEN 
WRITE (*,*) 'THE NUMBER OF DAYS SELECTED SHOULD BE' 
WRITE (*,*) 'LESS THAN 51 BEFORE PICKING OPTION r" 
GO TO 230 
END IF 
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DO 240 IT= IMIN, IMAX 
1=1+1 
11=11+1 
IF(II.GT.2000) THEN 

WRITE (*,*) 'THE TOTAL NUMBER OF DAYS IN ALL ' 
WRITE {*,*) 'SELECTED RECESSION PERIODS EXCEEDS' 
WRITE {*,*) 'THE LIMIT OF 2000. 
GO TO 250 
END IF 

INDICAT(II)= NMRECES 
X(I)= QLOG(IT) 
Y{I)= REAL(IT) 
XX(II)= QLOG(IT) 
YY(II)= REAL(IT) 
IF(QLOG(IT).GT.QLOGMAX) QLOGMAX= QLOG(IT) 
IF(QLOG(IT).LT.QLOGMIN) QLOGMIN= QLOG(IT) 

240 CONTINUE 
11=11+1 
XX(II)= 0.0 
YY(II)= 0.0 
NSELECT= I 
WRITE (*,*) ' DAYS 
WRITE (*,*) ' ( Yd) ) 
XTOTAL= 0.0 
YTOTAL= 0.0 
DO 245 1=1,NSELECT 
XTOTAL= XTOTAL + X(I) 
YTOTAL= YTOTAL + Y(I) 

245 WRITE (*,*) Yd), Xd), 
XMEAN= XTOTAL/NSELECT 
YMEAN= YTOTAL/NSELECT 
COEFF1=0.0 
COEFF2=0.0 
R2=0.0 
CALL REGRES2(X,Y,NSELECT,COEFFl,C0EFF2,R2) 

WRITE (*,*) ' BEST-FIT EQUATION:' 
WRITE (*,248) ' T = ( ', COEFFl,'* LOGQ ) + ', C0EFF2 
WRITE (*,*) ' DAYS/LOG CYCLE=', -1*C0EFF1 
WRITE (*,*) ' COEFFICIENT OF DETERMINATION = ', R2 

248 FORMAT (A,G12.4,A,G12.4) 
WRITE (*,*) ' MEAN LOG Q = ', XMEAN 
WRITE <*,*) • ' 
WRITE (*,*) ' ' 
WRITE(10,19) XMEAN, -l*COEFFl, REALdMIN), YMEAN, 

$ REAL(IMAX),IYR1D(IPEAK)+1910,IMOID(IPEAK), IDAlD(IPEAK) 
WRITE(13,19) XMEAN, -1*C0EFF1, REAL(IMIN), YMEAN, 

$ REAL(IMAX),IYR1D(IPEAK)+1910,IMOID(IPEAK), IDAlD(IPEAK) 
XMEANAR(NMRECES)= XMEAN 
YMEANAR(NMRECES)= YMEAN 
COEFIAR(NMRECES)= COEFFl 
COEF2AR(NMRECES)= C0EFF2 
IMINAR(NMRECES)= IMIN 
IMAXAR(NMRECES)= IMAX 
IYRAR (NMRECES) = lYRlDdPEAK) + 1910 
IMOAR(NMRECES)= IMOID(IPEAK) 
IDAAR(NMRECES)= IDAID(IPEAK) 

LOG Q 
( Xd) ) 
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IF {NMRECES.EQ.50) THEN 

WRITE (*,*) • ' 
WRITE (*,*) 'YOU HAVE ANALIZED 50 RECESSIONS.' 
WRITE (*,*) 'THIS IS THE MAXIMUM ALLOWABLE.' 
WRITE (*,*) • ' 
WRITE (*,*) ' ' 

END IF 
ICOUNT= ICOUNT-1 

GO TO 200 
ELSEIF (PICK.EQ.'q*) THEN 
GO TO 250 

ELSE 
WRITE (*,*) 'OPTION NOT RECOGNIZED. CHOOSE AGAIN.' 
GO TO 230 

END IF 
END IF 

250 CONTINUE 
C 
C CONTINUE AFTER RECESSION PERIODS HAVE BEEN SELECTED: — 

NUMBRII= II 
IIDV=0 
DO 270 111=1,NUMBRII 

IF(XX(III) .NE.O.O.AND.YYdll) .NE. 0 . 0 .AND.XX(III) .NE.-99.AND. 
$ YY(III).NE.-99) THEN 

IIDV=IIDV+1 
END IP 

270 CONTINUE 
WRITE (10,*) 'TOTAL NUMBER OF DAILY VALUES OF STREAMFLOW THAT WERE 

$ USED, FOR ALL RECESSION' 
WRITE (10,*) 'PERIODS INITIALLY SELECTED = ', IIDV 

280 CONTINUE 
WRITE (*,*) 'DO YOU WANT TO ANALIZE THE RECESSIONS SELECTED? (y OR 

$ n) ' 
READ(*,'(A)') PICK 
IF(PICK.EQ.'n') THEN 

GO TO 600 
ELSEIF(PICK.EQ.'y) THEN 

GO TO 290 
ELSE 

WRITE {*,*) -OPTION NOT RECOGNIZED.• 
GO TO 280 

END IF 
290 CONTINUE 

C 
C DETERMINE MAX AND MIN SLOPES AND TRANSFER LOGQ AND SLOPE TO OTHER 

VARIABLES FOR LISTING THEM BY DECREASING LOGQ: 

SLOPEMX= 0.0 
SLOPEMN= 2000.0 
DO 300 I=1,NMRECES 
SLOPE= -1*C0EF1AR(I) 
IF(SLOPE.GT.SLOPEMX) SLOPEMX=SLOPE 
IF(SLOPE.LT.SLOPEMN) SLOPEMN=SLOPE 
ORIGNO(I)=I 



www.manaraa.com

359 

'MAXIMUM LOG Q FOR ALL RECESSIONS= , QLOGMAX 
'MAXIMUM LOG Q FOR ALL RECESSIONS= , QLOGMAX 
'MINIMUM LOG Q FOR ALL RECESSIONS= , QLOGMIN 
'MINIMUM 
1 1 
1 

LOG Q FOR ALL RECESSIONS= , QLOGMIN 

RECESSION PERIODS AFTER SORTING BY LOG Q:' 
'ORIG. GRAPHIC OF 

'NUMBER LOG Q SLOPE ', SLOPEMN, SLOPEMX 

XMNARAY(I)= XMEANAR(I) 
300 COFARAY(I)= COEFIAR(I) 

CALL ORDER {NMRECES, XMNARAY, COFARAY, ORIGNO) 
WRITE (10,*) 'NUMBER OF RECESSION PERIODS INITIALLY SELECTED 

$ NMRECES 
WRITE (10,*) 
WRITE (*,*) 
WRITE (10,*) 
WRITE (*,*) 
WRITE (10,*) 
WRITE (10,*) 

WRITE (10,*) 
WRITE (10,*) 

$ SLOPE:' 
WRITE (10,18 
N0WRITE=1 

305 CONTINUE 
WRITE (*,*) 

$C OF SLOPE' 
WRITE (*,18) 'NUMBER LOG Q SLOPE 
DO 310 I=NMRECES,1,-1 
IPICK(I)= 1 
SLOPE= -1.0*COFARAY(I) 
DIFF= SLOPE - SLOPEMN 
NUMBLNK= INT( DIFF*40/ (SLOPEMX-SLOPEMN) ) 
WRITE (*,15) ORIGNO(I), XMNARAY (I) , COFARAY(I), 

$ (BLANK(J),J=1,NUMBLNK), '*' 
IF (NOWRITE.EQ.l) THEN 

WRITE (10,15) ORIGNO(I), XMNARAY(I), COFARAY(I) 
$ (BLANK(J),J=1,NUMBLNK), '*' 

END IF 
310 CONTINUE 

NOWRITE=0 
WRITE (*,*) ' DO YOU WANT TO SEE IT AGAIN? (y OR n) 
READ (*,'(A)') YESNO 
IF(YESNO.NE.'n') GO TO 305 

'ORIG. ORDERED GRAPHI 

SLOPEMN, SLOPEMX 

C 
C SELECT DATA LINES TO BE DELETED BEFORE REGRESSION: 

WRITE (*,*) 'BEFORE OBTAINING THE LEAST-SQUARES BEST FIT' 
WRITE (*,*) 'EQUATION FOR SLOPE (DELTA T/DELTA LOG Q) VERSUS' 
WRITE (*,*) 'LOG Q, HOW MANY RECESSIONS SHOULD BE ELIMINATED?' 
READ (*,*) NUMELIM 
WRITE (10,*) 'BEFORE OBTAINING THE LEAST-SQUARES BEST FIT ' 
WRITE (10,*) 'EQUATION FOR SLOPE (DELTA T/DELTA LOG Q) VERSUS' 
WRITE (10,*) 'LOG Q, THIS NUMBER OF RECESSIONS WAS ELIMINATED:', 

$ NUMELIM 
WRITE (13,*) 'THIS NUMBER ELIMINATED : ', NUMELIM 
WRITE (13,*) 'ELIMINATED RECESSIONS INDICATED BELOW:' 
IF(NUMELIM.EQ.O) GO TO 330 

WRITE (11,*) 'NOTE THAT THESE RECESSIONS, IDENTIFIED BY 
WRITE (11,*) 'THEIR ORIGINAL SEQUENTIAL NUMBERS, WERE 
WRITE (11,*) 'DELETED FROM ANALYSIS BEFORE DETERMINING 
WRITE (11,*) 'BEST-FIT EQUATIONS:' 

DO 320 J=l,NUMELIM 
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WRITE (*,*) 'ENTER RECESSION TO ELIMINATE (ENTER ITS "ORIGINA 

$L NUMBER") • 
READ (*,*) ITHIS 
WRITE (13,*) ITHIS 
WRITE (11,*) ' ', ITHIS 
DO 315 I=1,NMRECES 

IF(ORIGNO(I).EQ.ITHIS) THEN 
ORIGNO(I)=0 
END IF 

315 CONTINUE 
320 CONTINUE 
330 CONTINUE 

C 
C ASSIGN VALUES TO X AND Y TO BE SENT TO THE REGRESSION SUBROUTINE:-

NUM=0 
DO 340 I=1,NMRECES 

IF(ORIGNO(I).EQ.O) GO TO 340 
NUM= NUM + 1 
X(NUM)= XMNARAY(I) 
Y(NUM)= COFARAY(I) 
ORIGNO(NUM)=ORIGNO(I) 

340 CONTINUE 
NMRECES= NUM 
WRITE (*,*)• X Y' 
DO 350 I=NMRECES,1,-1 

350 WRITE (*,*) X(I), Y(I) 
C 
C SHOW ORDERED DATA, AFTER ELIMINATION: 

C 
WRITE (10,*) ' • 
WRITE (10,*) • 

$ . 
WRITE (10,*) ' RECESSION PERIODS LEFT AFTER ELIMINATION: " 
WRITE (10,*) 'ORIG. ORDERED GRAPHIC OF 
$SLOPE' 
WRITE (10,18) 'NUMBER LOG Q SLOPE ', SLOPEMN, SLOPEMX 
DO 352 I=NMRECES,1,-1 

SLOPE=-1.0*Y(I) 
DIFF= SLOPE-SLOPEMN 
NUMBLNK= INT(DIFF*40/(SLOPEMX-SLOPEMN)) 

352 WRITE(10,15) ORIGNO(I), X(I), Y(I), 
$ (BLANK(J),J=1,NUMBLNK), '*' 
MXLOGQC= X(NMRECES) 
WRITE (10,*) 'AMONG THE SELECTED RECESSION PERIODS, THIS IS THE' 
WRITE (10,*) 'MAXIMUM VALUE OF LOG Q FOR WHICH A SLOPE(DAYS/LOGQ)' 
WRITE (10,*) 'WAS CALCULATED: ', MXLOGQC 

C 
C— PERFORM REGRESSION AND WRITE BEST EQUATION FOR SLOPE AS FUNCT. OF 
DISCHARGE 
C 

COEFFA= 0.0 
COEFFB= 0.0 
R2= 0.0 
CALL REGRES2(X,Y,NUM,COEFFA,COEFFB,R2) 

353 FORMAT (A,F8.2,A,F8.2) 
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354 FORMAT (A,F8.2,A,F8.2,A,F8.2) 

WRITE (10,*) • ' 

WRITE (10,*) • 
$ . 

WRITE (10,*) 'BEST-FIT LINEAR EQUATION FOR SLOPE VS. LOG Q:' 
WRITE (10,353) 'DELTA T/DELTA LOGQ = (',COEFFA,' * LOGQ ) + ', 

$ COEFFB 
WRITE (10,*) 'COEFFICIENT OF DETERMINATION = ', R2 
WRITE (10,*) • RESULTS OF THIS EQUATION:' 
WRITE (10,*) ' SLOPE (TIME 
WRITE (10,*) ' INCREMENT PER LOG Q GRAPHIC OF 

$ SLOPE' 
WRITE (10,18) ' LOGQ INCREMENT)', SLOPEMN, SLOPEMX 
XLOGQ= MXLOGQC 

370 CONTINUE 
SLOPE= -1*C0EFFA*XL0GQ - 1*C0EFFB 
DIFF= SLOPE-SLOPEMN 
NUMBLNK= INT(DIFF*40/(SLOPEMX-SLOPEMN)) 
IF(NUMBLNK.LT.O) THEN 

WRITE (10,*) XLOGQ, SLOPE, " 
ELSE 
WRITE (10,*) XLOGQ, SLOPE, (BLANK(J), J=1,NUMBLNK), '*' 

END IF 
XLOGQ= XLOGQ - 0.05 
IF(XLOGQ.GT.QLOGMIN) GO TO 370 

C AFTER INTEGRATION WRITE EQUATION FOR TIME AS FUNCTION OF DISCHARGE: 

COEFFC= -0.5*COEFFA*MXLOGQC**2 - COEFFB*MXLOGQC 
WRITE (10,*) ' ' 
WRITE (10,*) ' 

$ . 
WRITE (10,*) 'AFTER INTEGRATION, THE FOLLOWING EQUATION IS ' 
WRITE (10,*) 'OBTAINED. IT.GIVES TIME (IN DAYS) AS A FUNCTION' 
WRITE (10,*) 'OF LOG Q. INITIAL CONDITION IS T=0 AT LOG Q= THE' 
WRITE (10,*) 'MAXIMUM LOG Q FOR WHICH A VALUE OF SLOPE WAS ' 
WRITE (10,*) 'CALCULATED.' 
WRITE (10,354) ' T =',C0EFFA/2,' * L0GQ**2 +', COEFFB,' * LOGQ 

$+', COEFFC 
WRITE (10,*) ' RESULTS OF THIS EQUATION:' 
WRITE (10,*) ' GR 

$APHIC OF TIME:' 
TIMEMAX= 0.5*COEFFA*QLOGMIN**2 + COEFFB*QLOGMIN + COEFFC 
WRITE (10,*) ' TIME(D) LOG Q Q 0.0 ' 
XLOGQ= MXLOGQC 

380 CONTINUE 
T= 0.5*COEFFA*XLOGQ**2 + COEFFB*XLOGQ + COEFFC 
XQ= 10.0**XLOGQ 
NUMBLNK= INT(T*25/TIMEMAX) 
WRITE (10,*) T, XLOGQ, XQ, (BLANK(J),J=1,NUMBLNK), '*' 
XLOGQ=: XLOGQ-0.05 
IF(XLOGQ.GT.QLOGMIN) GO TO 380 

C 
C DETERMINE MAX, MIN, AND MEDIAN K: 

C 
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DO 390 1=1,NMRECES 

K(I)= Y(I)*(-1) 
390 DUMMY(I)= 1.0 

CALL ORDER(NMRECES,K,DUMMY,ORIGNO) 
KMaX= K(NMRECES) 
KMIN= K(l) 
IDOV®J= 0 
IUP= NMRECES + 1 
ICNT=0 

395 CONTINUE 
ICNT=ICNT+1 
IF(ICNT.GT.50) THEN 

WRITE (*,*) 'PROBLEMS WITH DETERMINATION OF MEDIAN" 
GO TO 400 

END IF 
IF(IUP-ID0WN.EQ.2) THEN 

KMED= K((lUP+lDOWN)/2) 
GO TO 400 
ELSEIF(IUP-IDOWN.EQ.l) THEN 
KMED= (K(IUP)+K(IDOWN)) / 2 
GO TO 400 
ELSE 
IDOWN= IDOWN+1 
IUP= IUP-1 
GO TO 395 

END IF 
400 CONTINUE 

C WRITE RAW RECESSION DATA TO FILE 0UTREC2: 

WRITE (11,*) ' 
$ . 
WRITE (11,*) ' DAYS ON MRC Q LOG Q DAYS SI 
$NCE LAST ORIG- ' 
WRITE (11,*) • ( Yd) ) (10**X(I)) ( X(I) ) PEAK 

${ I ) SEQ. #' 
11= NUMBRII + 1 

520 11= II-l 
IF(XX(II).EQ.O.O.AND.YY(II).EQ.0.0) THEN 

WRITE (11,*) • 
11= II-l 
T=0.5*COEFFA*XX(II)**2 + COEFFB*XX(II) + COEFFC 
DIFF= T-YY(II) 
ZZ(II)= T 
WRITE (11,*) ZZ(II), 10**(XX(II)), XX(II), YY{II), INDICAT(II) 
GO TO 520 
ELSE IF (XX(II).EQ.-99.AND.YY(II).EQ.-99) THEN 
GO TO 530 
ELSE 
ZZ(II)= DIFF + YY(II) 
WRITE (11,*) ZZ(II), 10**(XX(II)), XX(II), YY(II), INDICAT(II) 
GO TO 520 

END IF 
530 CONTINUE 

WRITE (10,*) • 
$ . 
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c 

600 CONTINUE 
WRITE (12,17) FNAME,SEASON,IYEARST+1910,IYEAREN+1910,NMRECES, 

$ KMIN,KMED,KMAX,MXLOGQC,0.5*COEFFA,COEFFB,COEFFC 
CLOSE (10,STATUS='KEEP') 
CLOSE (11,STATUS='KEEP') 
CLOSE (12,STATUS='KEEP') 
CLOSE (13,STATUS='KEEP') 
STOP 
END 

C THIS SUBROUTINE MAKES TABULAR OUTPUT OF RECESSION DATA: 

SUBROUTINE TABLE(QLOG,FLOW,lYR,IMO,IDA,IPEAK,IMIN,IMAX,PICK) 
REAL FLOW(60), QLOG(60), DELQLOG{60) 
INTEGER IYR(60), IMO(60), IDA(60) 
CHARACTER*80 PICK 
IF (PICK.EQ.'f) THEN 

ISTART=1 
ELSE 

10 CONTINUE 
WRITE (*,*) 'ENTER STARTING DAY (1,11,21,OR 31)' 
READ (*,•(A)•) PICK 
IF(PICK.EQ.'1') THEN 

ISTART=1 
ELSEIF(PICK.EQ.•11•) THEN 
ISTART=11 
ELSEIF(PICK.EQ. '21 • ) THEN 
ISTART=21 
ELSEIF(PICK.EQ.'31') THEN 
ISTART=31 
ELSE 
WRITE (*,*) 'OPTION NOT RECOGNIZED' 
GO TO 10 

END IF 
END IF 

IEND= ISTART+15 
IF(ISTART.GT.60) ISTART=60 
IF(IEND.GT.60) IEND= 60 

20 FORMAT (116, 3F10.4, 118, 318) 
DO 40 IT= ISTART, lEND 

IF(IT.EQ.l) THEN 
DELQLOG(IT)= 999.0 

ELSE 
DELQLOG(IT)= QLOG(IT)-QLOG(IT-l) 

END IF 
40 CONTINUE 

WRITE{*,*) •TIME AFTER DELTA TIME AFTER' 
WRITE(*,*) • PEAK LOG Q LOG Q Q START YEAR . 

$ MONTH DAY' 
DO 230 IT= ISTART,lEND 

IF (IT.GT.IMAX.OR.IT.LT.IMIN) THEN 
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WRITE (*,*) ' DAY IS OUTSIDE OF PERIOD SELECTED' 

ELSEIF (QLOG(IT).EQ.-99.9) THEN 
WRITE (*,*) "DAY IS OUTSIDE RECESSION PERIOD' 

ELSEIF (QLOG(IT).EQ.-88.8) THEN 
WRITE (*,*) 'STREAMFLOW = ZERO ' 

ELSE 
WRITE (*,20) IT, QLOG(IT), DELQLOG(IT), FLOW(IT), IT+IPEAK, 

$ lYR(IT), IMO(IT), IDA(IT) 
END IF 

230 CONTINUE 
RETURN 
END 

C 
C 
C 
C THIS SUBROUTINE MAKES GRAPHICAL OUTPUT OF RECESSION DATA: 
C 

SUBROUTINE GRAPH (QLOG,FLOW,lYR,IMO,IDA,IPEAK,IMIN,IMAX, 
$ XLGQMAX,XLGQMIN,PICK) 
REAL FLOW(60), QLOG(60) 
INTEGER IYR(60), IMO(60), IDA(60) 
CHARACTER*! BLANK(80) 
CHARACTER*80 PICK 
DO 2 1=1,80 

2 BLANK(I)= • • 
IF (PICK.EQ.'g') THEN 

ISTART=1 
INTERVL=1 

ELSE 
3 CONTINUE 

WRITE (*,*) 'ENTER STARTING DAY (1, 11, 21, OR 31)' 
READ(*,'(A)•) PICK 
IF{PICK.EQ.'1') THEN 

ISTART= 1 
ELSEIF (PICK. EQ. • 11 • ) THEN 
ISTART=11 

ELSEIF(PICK.EQ.'21 • ) THEN 
ISTART=21 

ELSEIF(PICK.EQ.'31') THEN 
ISTART=31 

ELSE 
WRITE (*,*) 'OPTION NOT RECOGNIZED' 
GO TO 3 

END IF 
4 CONTINUE 

WRITE (*,*) 'ENTER TIME INTERVAL (1=EVERY DAY, 2=EVERY OTHER 
$ DAY, OR 3=EVERY THIRD DAY)' 

READ (*,'(A)') PICK 
IF(PICK.EQ.'1') THEN 

INTERVL=1 
ELSEIF(PICK.EQ.'2•) THEN 

INTERVL=2 
ELSEIF(PICK.EQ.'3') THEN 
INTERVL=3 

ELSE 
WRITE (*,*) 'OPTION NOT RECOGNIZED' 
GO TO 4 
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END IF 

END IF 
IEND= ISTART+16*INTERVL 

IF(ISTART.GT.60) ISTART=60 
IF(IEND.GT.60) IEND=60 
IIEND= ISTART 

8 IIEND= IIEND + INTERVL 
IF(IIEND.LT.60.AND.IIEND.LT.IEND) GO TO 8 
IF(IIEND.GT.IEND) THEN 

IEND= IIEND - INTERVL 
ELSE 
IEND= IIEND 

END IF 
WRITE (*,9) • LOG Q =', XLGQMIN, XLGQMAX 

9 FORMAT (A8, 6X, 1F6.2, 55X, 1F6.2) 
10 FORMAT (113, 115, 213, 5X, A50) 
12 FORMAT (113, 115, 213, 5X, 60A1) 

DO 80 IT= ISTART, lEND, INTERVL 
IF (IT.GT.IMAX.OR.IT.LT.IMIN) THEN 

WRITE (*,10) IT, lYRdT), IMO(IT), IDA(IT) , 
$ 'DAY IS OUTSIDE OF PERIOD SELECTED' 

ELSEIF(QLOG(IT).EQ.-99.9) THEN 
WRITE (*,10) IT, lYR(IT), IMO(IT), IDA(IT), 

$ 'DAY IS OUTSIDE OF RECESSION PERIOD' 
ELSEIF (QLOG(IT).EQ.-88.8) THEN 

WRITE (*,10) IT, lYR(IT), IMO(IT), IDA{IT), 
$ 'STREAMFLOW = ZERO ' . . „ 

ELSEIF (QLOG(IT) .GT.XLGQMAX.OR.QLOG(IT) .LT.XLGQ^IIN)- THEN 
WRITE (*,10) IT, lYR(IT), IMO(IT), IDA(IT), 

$ 'FLOW IS OUTSIDE OF RANGE* 
ELSE 

DIFF= QLOG(IT) - XLGQMIN 
NUMBLNK= INT(DIFF* 60/(XLGQMAX-XLGQMIN)) 
WRITE (*,12) IT, lYR(IT), IMO(IT), IDA(IT), 

$ (BLANK(J), J=1,NUMBLNK), '*' 
END IF 

80 CONTINUE 
RETURN 
END 

C THIS SUBROUTINE PERFORMS LEAST-SQUARES REGRESSION TO FIND BEST-FIT 

C EQUATION OF LINEAR BASIS ( Y = A*X + B ) 

C 
SUBROUTINE REGRES2(X,Y,NUM,COEFFA,COEFFB,R2) 
REAL A(2,4) 
REAL X(50), Y(50) 
DO 20 1=1,2 
DO 20 J=l,4 

20 A(I,J)= 0.0 
RT1= 0.0 
RT2= 0.0 
RT3= 0.0 
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RT4= 0.0 
RT5= 0.0 
DO 40 1=1,NUM 
A(l,l)= A(l,l) + X(I)**2 
A(l,2)= A(l,2) + X(I) 
A(2,l)= A(2,l) + X(I) 
RT1= RTl + X(I)*Y(I) 
RT2= RT2 + Y(I) 
RT3= RT3 + X{I) 

40 RT4= RT4 + Y(I)**2 
A(2,2)= REAL(NUM) 
N=2 

write {*,*) 'NUMBER OF DATA PAIRS: NUM 
write {*,*) "SYSTEM OF EQUATIONS:' 
write (*,*) ' Right-hand side: ', RTl, RT2 
write (*,*) ' Left-hand side before inverting: ' 
write (*,*) A(l,l), A{1,2), A{1,3), A(l,4) 
write (*,*) A(2,l), A(2,2), A(2,3), A(2,4) 

CALL INVERS(A,N) 
write (*,*) ' Left-hand side after inverting: ' 
write (*,*) A{1,1), A(l,2), A(l,3), A{1,4) 
write {*,*) A(2,l), A(2,2), A(2,3), A(2,4) 

COEFFA= A(1,1)*RT1 + A{1,2)*RT2 
COEFFB= A(2,1)*RT1 + A(2,2)*RT2 

R2= COEFFA*(RT1-RT3*RT2/NUM)/(RT4-((RT2)**2)/NUM) 
write (*,*) ' ' 

RETURN 
END 

C 
C THIS SUBROUTINE CHANGES AN N*N MATRIX [A] TO ITS INVERSE 
C (Note: The matrix is actually N*(2N) internally) 
C 

SUBROUTINE INVERS(A,N) 
REAL A(2,4) 
DO 10 1=1,N 
DO 10 J=N+1,2*N 

10 A(I,J)= 0.0 
DO 20 1= 1,N 

20 A{I,N+I) = 1.0 
DO 90 K=1,N 

DO 40 1=1,N 
TEMP=A(I,K) 

DO 30 J=1,2*N 
A{I,J)=A(I,J)/TEMP 

30 CONTINUE 
40 CONTINUE 

DO 80 1=1,N 
IF (I.NE.K) THEN 

DO 70 J=1,2*N 
A(I,J)=A(I,J)-A(K,J) 

70 CONTINUE 
END IF 

80 CONTINUE 
90 CONTINUE 

DO 150 1=1,N 
AP=A(I,I) 

DO 130 J=1,2*N 
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A(I, J)=A(I, J) ZAP 

130 CONTINUE 
150 CONTINUE 

DO 180 1=1,N 
DO 180 J=1,N 

180 A(I,J)=A(I,J+N) 
RETURN 
END 

SUBROUTINE ORDER(M,LISTl,LIST2,LIST3) 
C INPUT IS 3 LISTS OF NUMBERS. ALL LISTS (LISTl,LIST2,AND LIST3) HAVE 
C M NUMBERS. OUTPUT IS SAME, IN ASCENDING ORDER, SORTED BY VALUES 
C IN LISTl. NOTE: LIST3 IS MADE UP OF INTEGERS. 

INTEGER I,M,NUM,PASSES 
REAL A 
REAL LISTl(50) 
REAL LIST2(50) 
INTEGER LIST3(50) 
CHARACTER SWAPED*3 
SWAPED= 'YES' 
NUM= M 
PASSES= 0 

10 CONTINUE 
SWAPED= 'NO' 
PASSES= PASSES + 1 
1=1 

20 CONTINUE 
IF(LISTl(I).LE.LISTl(I+l)) THEN 

ELSE 
A= LISTl(I+l) 
LISTl(I+l) = LISTl(I) 
LISTl(I)= A 
B= LIST2(I+1) 
LIST2(I+1)= LIST2(I) 
LIST2(I)= B 
C= LIST3(I+1) 
LIST3{I+1)= LIST3(I) 
LIST3(I)= C 
SWAPED= -YES' 

ENDIF 
1=1+1 

IF (I.LE.(NUM-PASSES)) THEN 
GOTO 20 
END IF 

IF (SWAPED.EQ.-YES") THEN 
GOTO 10 
END IF 

RETURN 
END 
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USES 
CRT; 

VAR 

BS, AS-.STRING [13] ; 
Bl:STRING[1]; 
B2:STRING[2]; 
B3:STRING[3]; 
B4:STRING[4]; 
B5:STRING[5]; 
CH:CHAR; 
COUNTER,IFINISH,K,J,I,DAY:INTEGER; 
INFILE,OUTFILE:TEXT; 
F:ARBAy[l..31,1..12] OF REAL; 
YEAR:ARRAY[1..300] OF INTEGER; 
MAXF, MINF, MAX, MIN: REAL; 
NAME,OUTF:STRING; 

PROCEDURE PAUSEl; 
BEGIN 
CH:=READKEy; 

END; 

{ program starts here } 

{ } 

BEGIN 

NAME:= 'A:\INPUT.DAT' ; { change name of input file } 
OUTF:= 'A:\OUTPUT.DAT' ; { change name of output file } 

{ J 

ASSIGN(INFILE,NAME); 
RESET(INFILE); 
ASSIGN(OUTFILE,OUTF); 
REWRITE(OUTFILE); 

CLRSCR; 

COUNTER:=0; 
AS: = • 123 • ; 
B3:='123'; 
B5: = '12345' ; 
IFINISH:=1; 
MAXF:=-10000; 
MINF:=+10000; 
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REPEAT 
BEGIN 

REPEAT 
BEGIN 
READLNdNFILE) ; 
READ{INFILE,AS); 
IF(AS=•ENDENDENDENDE') THEN 
BEGIN 
IFINISH:=0; 
AS:=• WTR'; 
END; 

END; 
UNTIL(AS=' WTR'); 

IF(IFINISH>0.5) THEN 
BEGIN 
READ(INFII.E,B3) ; 
COUNTER:=C0UNTER+1; 
READ(INFILE,YEAR[COUNTER]); 
WRITELNC WORKING ON YEAR ',YEAR[COUNTER]:10) 
REPEAT 
READ(INFILE,Bl); 
UNTIL(B1='X'); 
READ(INFILE,MAX); 
REPEAT 
READ(INFILE,Bl); 

UNTIL(B1='N'); 
READ(INFILE,MIN); 

END; 

IF(MAXF<MAX)AND{MAX>-9995) THEN 
MAXF:=MAX; 

IF(MINF>MIN)AND(MIN>-9995) THEN 
MINF:=MIN; 

END; 
UNTIL(IFINISH<0.5); 

CLOSE(INFILE); 

WRITELN(OUTFILE,"MAXIMUM ON RECORD:'); 
WRITELN(0UTFILE,MAXF:12:2); 
WRITELN(OUTFILE,'MINIMUM ON RECORD:'); 
WRITELN(OUTFILE,MINF:12:2); 

RESET(INFILE); 

AS:='1234567890123'; 
IFINISH:=1; 
COUNTER:=0; 

REPEAT 
BEGIN 
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REPEAT 
BEGIN 
READLN(INFir.E,AS) ; 
IF(AS='ENDENDENDENDE') THEN 
BEGIN 
IFINISH:=0; 
AS:=• DAY'; 

END; 
END; 
UNTIL{AS=• DAY'); 

IF(IFINISH>0.5) THEN 
BEGIN 
COUNTER:=C0UNTER+1; 
WRITELN{OUTFILE,YEAR[COUNTER]:4,• 1 2 

5 6 
'7 8 9 10 11 12'); 
FOR K:=l TO 31 DO 
BEGIN 
READ{INFILE,DAY); 
FOR J:=l TO 12 DO 
READ(INFILE,F[DAY,J]); 
WRITE(OUTFILE,DAY:4); 
FOR J:=l TO 12 DO 
WRITE(OUTFILE,F[DAY,J]:10:1) ; 

WRITELN(OUTFILE); 
END; 

END; 

END; 
UNTIL{IFIN1SH<0.5); 

WRITELN(OUTFILE,9999); 

CLOSE(INFILE); 
CLOSE(OUTFILE); 

END. 
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PROGRAM REGRESS 

WRITTEN BY AHMAD A. RAAII 

This is a typical SAS program which performs a comprehensive, linear 
multiple regression analysis. 

options ls=90; 

data old; 
infile '~/regression/reg.dat2orig'; 
input id $ order xl-x6 yl-y8; 
lyl=log(yl); 
lxl=log(xl); 
lx2=log(x2); 
lx3=log(x3); 
lx6=log(x6); 

if order=77 then delete; 

proc plot; 
plot yl * (xl x2 x3 x6); 
plot yl * (1x1 1x2 1x3 1x6); 
plot lyl*lxl; 
plot lyl*lx2; 
plot lyl*lx3; 
plot lyl*lx6; 

proc corr; 
var yl xl x2 x3 x6; 
run; 

proc corr; 
var yl 1x1 1x2 1x3 1x6; 
run; 

proc corr; 
var lyl 1x1 1x2 1x3 1x6; 
run; 

proc RSQUARE CP; 
model yl = xl x2 x3 x6; 

proc RSQUARE CP; 
model yl = 1x1 1x2 1x3 1x6; 

proc RSQUARE CP; 
model lyl = 1x1 1x2 1x3 1x6; 

proc reg data=old; 
model lyl=lxl 1x2 1x3 lx6/selection=forward 
slentry=0.05 p r influence elm cli; 
plot r.*p.; 
plot r.*lxl; 
plot r.*lx2; 
plot r.*lx3; 
plot r.*lx6; 
plot lyl*p.; 
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output out=one predicted=yhat residual=resid; 

proc reg data=old; 
model lyl=lxl 1x2 1x3 lx6/selection=bac]cward 
slstay=.l p r influence elm cli; 
plot r.*p.; 
plot r.*lxl; 
plot r.*lx2; 
plot r.*lx3; 
plot r.*lx6; 
plot lyl*p.; 
output 0ut=tV70 predicted=yhat residual=resid; 

proc reg data=old; 
model lyl=lxl 1x2 1x3 lx6/selection=stepwise 
sle=0.05 sls=.l r p influence elm cli vif; 
plot r.*p.; 
plot r.*lxl; 
plot r.*lx2; 
plot r.*lx3; 
plot r.*lx6; 
plot lyl*p.; 
output out=three predicted=yhat residual=resid 

proc rank data=one normal= BLOM out=onel; 
var resid; 
ranks Q; 
proc plot data=onel; 
plot resid*Q; 
run; 

proc rank data=two normal=BLOM out=twol; 
var resid; 
ranks Q; 
proc plot data=twol; 
plot resid*Q; 
run; 

proc rank data=three normal=BLOM out=threel; 
var resid; 
ranks Q; 
proc plot data=threel; 
plot resid*Q; 
run; 
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